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Candida species are the most common causes of fungal infection. Approximately 90% of
infections are caused by five species: Candida albicans, Candida glabrata, Candida tropica-
lis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and
C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine
and not leucine. C. albicans remains the most commonly isolated but is decreasing relative
to the other species. The increasing incidence of C. glabrata is related to its reduced suscept-
ibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated
with expansion of gene families, particularly of cell wall genes. Similar independent pro-
cesses took place in the C. glabrata species group. Gene loss and expansion in an ancestor of
C. glabrata may have resulted in preadaptations that enabled pathogenicity.

Candida species are among the most com-
mon human fungal pathogens and are re-

sponsible for both superficial (mucosal and cu-
taneous) and systemic infection (reviewed in
Papon et al. 2013a). Approximately 8% of no-
socomial bloodstream infections are caused by
Candida species (Pfaller and Diekema 2007).
Several international surveys have tracked the
incidence of Candida infection and the rates
of drug resistance over the past decades (Pfaller
et al. 2001, 2002, 2008, 2010a,b,c,d, 2011a,b).
One of the most comprehensive studies
(ARTEMIS), using data from 142 institutions
in 41 countries, identified 31 species of Candida
in clinical samples over a 10-year period (1997–
2007) (Pfaller et al. 2010b). Five species are
responsible for just over 92% of cases, and 13
species were very rarely identified (incidences
of ,0.01%) (Pfaller et al. 2010b). The incidence

of some of the intermediate species may also
be overestimated. For example, many isolates
originally identified as Candida famata (Debar-
yomyces hansenii) were subsequently shown to
be predominantly Candida guilliermondii or
Candida parapsilosis (Castanheira et al. 2013).

The five species most commonly associated
with candidiasis are Candida albicans (65.3%),
Candida glabrata (11.3%), Candida tropicalis
(7.2%), C. parapsilosis (6.0%), and Candida
krusei (2.4%) (Table 1) (Pfaller et al. 2010b).
The number of infections is rising, although
there was a slight drop between 2005 and
2007. C. albicans remains the most commonly
isolated, but the proportion relative to other
Candida species has decreased over time
(from 71% to 65%). This was accompanied by
an increasing incidence of C. glabrata, C. tropi-
calis, and C. parapsilosis.
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The incidence also varies substantially with
geographical location. C. glabrata is highest in
Asia-Pacific and the European Union (EU),
whereas the incidence of C. tropicalis infection
in Africa and the Middle East is approaching
three times that of the EU. C. parapsilosis is high-
est in North America and Latin America. The
increase in C. glabrata in particular is associated
with reduced susceptibility to fluconazole, the
most commonly used azole drug (Pfaller and
Diekema 2004; Klevay et al. 2008; Chapeland-
Leclerc et al. 2010; Alexander et al. 2013).

Candida species have historically been as-
sociated with infection of older patients (.64
yr), particularly for C. glabrata (Diekema et al.
2002). In contrast, the number of infections
caused by C. parapsilosis tends to be higher in
infants of ,1 yr (Diekema et al. 2002). Recent
studies suggest that at least in the United States,
the incidence of all Candida species among ne-
onates is decreasing, which may be related to
standardization of central line care (Fridkin et al.
2006; Chitnis et al. 2012; Cleveland et al. 2012).

CLASSIFICATION OF Candida SPECIES: THE
CTG CLADE AND BEYOND

One of the difficulties in characterizing Candida
species is that they do not share a single evolu-
tionaryorigin. The term “Candida” was assigned
to imperfect fungi (no clearly defined sexual cy-
cle). Many Candida species belong to the CTG
(or CUG) clade, in which the CTG codon codes
for serine, rather than leucine (Table 1) (Santos
et al. 1993). The CTG clade includes many of the
most important pathogens (C. albicans, C. tropi-
calis, and C. parapsilosis) as well as rarer causes of
disease (Candida dubliniensis, Candida guillier-
mondii, and Candida lusitaniae) (Fitzpatrick et
al. 2006, 2010; Maguire et al. 2013). Some of the
species are always, or mostly, diploid (Table 1).

Many of the diploid asexual Candida species
undergo a parasexual cycle, mating between
diploid cells of opposite mating type, followed
by loss of chromosomes and reversion to dip-
loid status (reviewed in Sherwood and Bennett
2009; Butler 2010; Heitman 2010). The parasex-

Table 1. Candida pathogenic species

Namea Common teleomorphs/synonyms Ploidyb Matingc Incidenced (%)

CTG clade species
C. albicans Diploid P 65.3
C. dubliniensis Diploid P 0.1
C. tropicalis Diploid P 7.20
C. parapsilosis Diploid NO 6.00
C. orthopsilosis Diploid NO 0.50e

C. metapsilosis Diploid NO ,0.1e

C. famata Debaryomyces hansenii Haploid Ho 0.30
C. lusitaniae Clavispora lusitaniae Haploid Het 0.60
C. guilliermondii Meyerozyma guilliermondii; Pichia

guilliermondii
Haploid Het 0.70

Other species
C. krusei Issatchenkia orientalis; Pichia kudriavzevii Haploid Het 2.40
C. glabrata Haploid NO 11.30
C. kefyr Kluyveromyces marxianus Haploid Ho 0.50
C. norvegensis Pichia norvegensis Ho 0.10
C. inconspicua Pichia cactophila ND 0.20
C. lipolytica Yarrowia lipolytica Haploid Het 0.05

aSpecies are listed in approximate order of phylogenetic relationship.
bHaploid indicates isolates can exist as stable haploids; diploids may also be formed.
cP, parasexual; NO, not observed; ND, not determined; Ho, homothallic; Het, heterothallic (data from Kurtzman et al. 2011).
dAverage incidence 1997–2007 (Pfaller et al. 2010b), except for C. metapsilosis and C. orthopsilosis.
eEstimated from Canton et al. 2011; C. orthopsilosis isolates are �8% and C. metapsilosis isolates are 1% of isolates identified

as C. parapsilosis.

S.A. Turner and G. Butler

2 Cite this article as Cold Spring Harb Perspect Med 2014;4:a019778

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



ual cycle has been characterized in C. albicans
(Bennett and Johnson 2003; Forche et al. 2008)
and C. tropicalis (Porman et al. 2011), although
not in C. parapsilosis (Sai et al. 2011). Recently,
it has been shown that C. albicans cells can form
stable haploids, which undergo mating and
autodiploidization (Hickman et al. 2013). A
full sexual cycle has been described for many
of the pathogens with haploid genomes (e.g.,
C. lusitaniae [Reedy et al. 2009] and C. guillier-
mondii [Wickerham and Burton 1954]) and
some of the other related rare pathogens or non-
pathogens (e.g., D. hansenii [van der Walt et al.
1977]).

The gradual discovery of hidden sexual or
parasexual cycles in human fungal pathogens
led to the hypothesis that limiting sexual repro-
duction may be important for proliferation in
certain niches, particularly during infection of
the host (Nielsen and Heitman 2007; Heitman
2010). This is supported by observations that
the parasexual cycle in C. albicans is induced
during stress (Berman and Hadany 2012). The
parasexual cycle results in a very high level of
aneuploidy (Forche et al. 2008). Aneuploidy
also frequently occurs during exposure to anti-
fungal drugs and is likely to be an important
adaptive response (Perepnikhatka et al. 1999;
Selmecki et al. 2009, 2010; Huang et al. 2011;
Hill et al. 2013).

The substitution of serine for leucine at
CTG codons is not complete; in C. albicans
and some other Candida species, it is estimated
that 97% of CTG codons are translated as serine
and 3% as leucine (Suzuki et al. 1997). C. albi-
cans has a very high tolerance for misincor-
poration of leucine at CTG codons, which is
induced by stress (Gomes et al. 2007). Misin-
corporation may affect the function of key
signaling molecules involved in pathogenesis
(Rocha et al. 2011). Misincorporation also dra-
matically changes the fungal cell wall, masking
b-glucan, and thus interfering with host recog-
nition (Miranda et al. 2013). Altering the genet-
ic code may also reduce the capacity for acqui-
sition of genes by horizontal gene transfer
(HGT) (Silva et al. 2007; Fitzpatrick et al. 2008).

Two species that are major causes of infec-
tion lie outside the CTG clade: C. glabrata and

C. krusei (Fig. 1; Table 1). C. glabrata is much
more closely related to Saccharomyces cerevisiae
than to C. albicans (Fitzpatrick et al. 2006), and
it lies within a group of species that have un-
dergone whole-genome duplication (WGD)
(Byrne and Wolfe 2007) (Fig. 1). The C. glabrata
genome contains all the genes required for mat-
ing and meiosis (Wong et al. 2003), and mating-
type switching has been observed (Brockert
et al. 2003; Butler et al. 2004; Edskes and Wick-
ner 2013). However, a sexual cycle has not yet
been described. Recently, two pathogenic spe-
cies that are closely related to C. glabrata have
been identified, Candida bracarensis and Can-
dida nivariensis (Alcoba-Florez et al. 2005; Cor-
reia et al. 2006), but these are rarely isolated
(Fig. 1) (Lockhart et al. 2009).

C. krusei is less well studied than the other
Candida species, particularly in relation to vir-
ulence. The teleomorph (sexually competent)
form of C. krusei is known as Issatchenkia
orientalis (Kurtzman et al. 2011) or Pichia ku-
driavzevii. Most research concentrates on its fer-
mentation ability and potential as a producer
of bioethanol (Dandi et al. 2013). The genome
sequence was recently reported (Chan et al.
2012). The carriage of C. krusei in healthy indi-
viduals is usually very low, except in some pop-
ulations such as Wayampi Amerindians, where
it appears to originate from food or the envi-
ronment (Angebault et al. 2013). The incidence
of C. krusei in infection is also low, yet the
organism is of considerable concern because
of its relative resistance to azoles and other an-
tifungal drugs (Drago et al. 2004; Munoz et al.
2005).

Other non-CTG clade Candida species that
are minor causes of infection include Candida
kefyr (Kluyveromyces marxianus) and two closely
related species, Candida norvegensis (Pichia nor-
vegensis) and Candida inconspicua (Pichia cac-
tophila) (Pfaller et al. 2010b). C. keyfr is related
to Kluyveromyces lactis and to the Saccharomyces
group (Lane et al. 2011), and C. norvegensis and
C. inconspicua also belong to a clade within the
Saccharomycetales (Diezmann et al. 2004).
Candida lipolytica (better known as Yarrowia
lipolytica), a very rare cause of infection
(�0.1% of Candida infections [Pfaller et al.
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2010b]), is distantly related to both the CTG
and Saccharomyces clades (Fig. 1) (Fitzpatrick
et al. 2006). The remaining non-CTG clade spe-
cies (e.g., Candida pelliculosa/Pichia anomola)
are even rarer (Pfaller et al. 2010b).

LESSONS FROM THE GENOMES

C. albicans

C. albicans is by far the best-studied species in
the CTG clade. Virulence is associated with the
transition from yeast growth to filamentous
forms such as hyphae and pseudohyphae (re-
viewed in Liu 2001; Jacobsen et al. 2012) and

also with a phenotypic switch from “white” to
“opaque” cells (reviewed in Morschhauser
2010; Huang 2012). Although there is some de-
bate about the relative roles of hyphae and yeast
cells in pathogenesis, hyphae are believed to be
important because they can invade and damage
both epithelial and endothelial cells and be-
cause they are required for escape from macro-
phages following phagocytosis (Thompson et
al. 2011; Jacobsen et al. 2012). In addition, a
large-scale screen confirmed that many genes
required for virulence have no apparent role in
morphogenesis and showed that others that are
required for morphogenesis have no effect on
virulence (Noble et al. 2010).

Ashbya gossypii

Kluyveromyces waltii 

Lachancea thermotolerans

Saccharomyces kluyveri

Pichia stipitis

Debaryomyces hansenii

Yarrowia lipolytica

Kluyveromyces lactis

Zygosaccharomyces rouxii 

Saccharomyces bayanus

Naumovozyma castellii

Saccharomyces cerevisiae

Saccharomyces mikatae
Post-WGD

species

Vanderwaltozyma polyspora

Nakaseomyces bacillisporus

Candida castellii

Candida bracarensis *

Candida glabrata *
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Candida albicans *

Candida dubliniensis *
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Figure 1. Relationships of the C. glabrata species group. The phylogenetic tree is taken from Gabaldón et al.
(2013) and was derived from a concatenated alignment of 603 one-to-one orthologs. Genomes sequenced by
Gabaldón et al. (2013) are bold. Pathogenic species are shown in red and are indicated with an asterisk. CTG,
CTG clade; WGD, whole-genome duplication.
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The switch from round white cells to elon-
gated opaque cells (and vice versa) is strongly
correlated with mating (Bennett and Johnson
2005; Lohse and Johnson 2009). Cells that are
homozygous at the mating locus switch to the
opaque form at a much higher rate than het-
erozygous cells, and opaque cells are compe-
tent for mating. The switching process is highly
regulated (Huang et al. 2006; Srikantha et al.
2006; Zordan et al. 2006, 2007; Tuch et al.
2010; Hernday et al. 2013). White and opaque
cells have different filamentation programs (Si
et al. 2013). White cells are more virulent in
systemic infection, whereas opaque cells adhere
better to skin (Kvaal et al. 1997, 1999). Opaque
cells may be better at evading the host immune
response (Geiger et al. 2004; Sasse et al. 2013).
The demonstration that strains that are het-
erozygous at the mating locus can also undergo
the white–opaque transition in certain envi-
ronmental conditions suggests that the switch
may be important for virulence of many clinical
isolates (Xie et al. 2013).

The genome sequence of C. albicans was
first reported in 2004 (Jones et al. 2004) and
further curated in 2005 (Braun et al. 2005). As-
sembly of the diploid genome was partially ad-
dressed in 2007 (van het Hoog et al. 2007), and a
“phased” diploid genome was reported in 2013
(Muzzey et al. 2013). C. albicans SC5314 plus
eight related strains, which were known to be
homozygous for one chromosome each, were
sequenced using high-coverage next-generation
sequencing. This enabled unambiguous deter-
mination of the phasing of single-nucleotide
polymorphisms (SNPs) in the parent strain.
The analyses supported previous observations
from SNP/CGH arrays that loss of heterozygos-
ity (LOH) events are common in C. albicans
(Abbey et al. 2011). Indeed, LOH is induced
by stress such as exposure to antifungal drugs
or growth in a mammalian host (Forche et al.
2009, 2011). However, some chromosomes or
chromosomal regions are never observed to
become homozygous, probably because they
contain lethal alleles (Hickman et al. 2013).

Allele-specific gene expression was detected
even in C. albicans grown in rich media (Muzzey
et al. 2013). Almost 200 genes have premature

termination codons in one allele, and in the
majority, expression is biased toward the
intact allele. Muzzey et al. (2013) found that
indels are enriched in regulatory (promoter)
regions, although there was no obvious correla-
tion with allele-specific gene expression. Inter-
estingly, the net effect of indels is to increase
repeat length over evolutionary time, which
may result from selective forces on nucleosome
positioning.

Early comparisons of the C. albicans ge-
nome with that of the nonpathogenic mod-
el yeast S. cerevisiae led to the identification
of several gene families that are expanded in
the pathogen and are associated with virulence
(Calderone and Fonzi 2001; Jones et al. 2004;
Braun et al. 2005). These include the ALS
(agglutinin-like sequence) adhesins, secreted
aspartyl proteases and lipases, and proteins in-
volved in oligopeptide and iron transfer. Subse-
quent analysis showed that many gene families
are expanded in other species in the CTG clade
(Butler et al. 2009). Twenty-one gene families
are enriched in the pathogens.

The ALS family of adhesins is expanded
in all the CTG pathogens, and its members
have been particularly associated with virulence
in C. albicans (Hoyer 2001; Hoyer et al. 2008).
ALS genes encode GPI-anchored proteins
located at the cell wall and are required for ad-
hesion. ALS3 in particular has multiple roles.
It is required for adherence to plastic and for
subsequent biofilm development (Nobile and
Mitchell 2005; Nobile et al. 2006). Als3 binds
to N-cadherin and E-cadherin on host endothe-
lial and epithelial cells and, together with the
invasion Ssa1, is required for endocytosis of C.
albicans (Phan et al. 2007; Moreno-Ruiz et al.
2009; Wachtler et al. 2012). Als3 and Ssa1 also
bind to the EGF (epidermal growth factor) re-
ceptor and to HER2 in epithelial cells, inducing
autophosphorylation of the receptors and en-
docytosis of the fungus (Zhu et al. 2012). Final-
ly, Als3 is required for acquisition of iron from
ferritin in the host (Almeida et al. 2008).

Somewhat surprisingly, Als3 appears to be
restricted to C. albicans (Jackson et al. 2009),
which may partially explain the dominance of
C. albicans as an infectious organism. Recom-
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binant vaccines directed against C. albicans have
mostly been generated using the amino termi-
nus of Als3 (Spellberg et al. 2006; Ibrahim et al.
2013). However, the vaccine is also protective
against infection with Staphylococcus aureus,
suggesting that it has a broad range (Spellberg
et al. 2008).

Many of the gene families that are expanded
in pathogenic species encode components of
the cell wall, which may influence interaction
with the host (Butler et al. 2009). Some have
been experimentally associated with pathogen-
esis such as the Hyr/IFF family (Bates et al.
2007; Kempf et al. 2009). However, other fami-
lies, such as the leucine-rich IFA family of puta-
tive transmembrane proteins, remain under-
studied.

To date, most characterizations of C. albi-
cans isolates have been carried out using molec-
ular fingerprinting methods, such as the Ca3
fingerprinting probe, multilocus sequence typ-
ing (MLST), multilocus microsatellite typing
(MLMT), and SNP array analysis (Soll 2000;
Bougnoux et al. 2002; Odds 2010; L’Ollivier
et al. 2012). MLST is probably the most widely
applied and has been used to type .2000 C.
albicans isolates (Bougnoux et al. 2002, 2008;
Odds et al. 2007; Odds 2010; Butler et al.
2012). The population structure is mostly clon-
al, with the majority of isolates falling into five
major clades and more than 10 minor clades
(Odds et al. 2007; Odds 2010). A small number
of “atypical” isolates, mostly isolated from the
genitals of Africans and Europeans, fall into
MLST clade 13, which is the most different
from the other clades (Odds 2010; Butler et al.
2012). There is evidence that there is a low level
of recombination within and between the clades
(Bougnoux et al. 2008).

The majority of isolates associated with
superficial infection and commensal carriage
fall into Clade 1 and have a truly global distri-
bution, suggesting that they may be better
adapted for colonization (Schmid et al. 1999;
Odds et al. 2007; Odds 2010). However, iso-
lates from the different clades do not differ in
virulence in animal models (MacCallum et al.
2009). Clade 1 isolates are generally resistant to
the antifungal drug flucytosine (a fluorinated

analog of cytosine), because of a mutation in
the FUR1 gene (uridine phosphoribosyl trans-
ferase) (Dodgson et al. 2004). Clade 1 isolates
are also resistant to terbinafine (Odds 2009).
Few other traits are clade specific, and there is
a wide variation in the phenotypes of the indi-
vidual isolates (MacCallum et al. 2009).

Molecular typing methods have been used
to type microevolution events during infec-
tion, to follow the transition from commen-
sal to infectious organism, and to look for evi-
dence of nosocomial transmission (Odds 2010).
However, it is not possible to distinguish be-
tween closely related isolates, nor to follow
small changes that occur during infection. In
the near future, we expect to see whole-genome
sequencing replacing MLST analysis, both for
population studies and for following the course
of infection.

C. albicans and C. dubliniensis

C. dubliniensis is the closest relative of C. albi-
cans with a fully sequenced genome, and until
the mid-1990s, it was not recognized as a dis-
tinct species (Sullivan et al. 1995). However, C.
dubliniensis is a rare cause of disease in man
and is also less virulent in animal models (Gil-
fillan et al. 1998; Stokes et al. 2007; Pfaller et al.
2010b). Comparison of the genomes of the two
species revealed that there has been widespread
gene loss in C. dubliniensis. Some genes have
been deleted, such as members of the serine
protease SAP family and HYR1 (one of the IFF
gene family). Others have undergone pseudo-
genization, including many of the filamentous
gene regulator (FGR) family. In contrast, some
genes have been specifically amplified in C. al-
bicans, such as the TLO family, which encode
components of the mediator complex (Zhang
et al. 2012a).

Several of the genomic differences between
C. albicans and C. dubliniensis are related to the
ability to switch to hyphal growth. Within the
CTG clade, only C. albicans and C. dubliniensis
form true hyphae. However, the conditions that
induce hyphal growth are significantly different,
and C. dubliniensis makes much fewer hyphae.
It is very likely that this is caused by underlying
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differences in transcriptional networks as well
as in genome content. This question was thor-
oughly addressed by Grumaz et al (2013), who
characterized the transcriptional profile of both
species during the yeast to hyphal transition.
They found that there is a shared core hyphal
response, which includes increased expression
of cell wall genes and of genes associated with
iron metabolism. Expression of the transcrip-
tion factors FCR1, NRG1, and RME1 is reduced
in both species. However, under some condi-
tions, such as following phagocytosis by macro-
phages, NRG1 is down-regulated in C. albicans
and not in C. dubliniensis, at least partly ex-
plaining inefficient hyphal production by the
latter (Moran et al. 2007).

Grumaz et al. (2013) found that expression
of the regulators UME6, SFL2, SET3, and ZCF39
is induced during hyphal growth of C. albicans
only. However, other studies showed that UME6
is also induced in hyphal growth of C. dublin-
iensis Wu284 (O’Connor et al. 2010). Specific
repression of SFL2 in C. albicans was identified
by Spiering et al. (2010). SFL2 is a major regu-
lator of morphogenesis in C. albicans and acts
together with a homolog SFL1 to regulate ex-
pression of hyphal- and yeast-specific genes
(Znaidi et al. 2013).

Further comparative transcriptional profil-
ing of C. albicans and C. dubliniensis is likely
to yield further insights into the evolution of
virulence and other characteristics. For exam-
ple, these are the only CTG clade species known
to form chlamydospores (large, thick-walled
spherical cells, usually found at the end of pseu-
dohyphae) under certain growth conditions.
The biological function of chlamydospores is
not known, but production is induced in nu-
trient-poor media and in nrg1 deletion strains
in C. albicans, and during growth of C. dublin-
iensis on Staib media (reviewed in Staib and
Morschhauser 2007). Comparing the trans-
criptional response of the two species revealed
that at least two cell wall proteins (CSP1 and
CSP2) are specifically expressed and localized
in chlamydospores in both (Palige et al. 2013).
Future research is needed to elucidate the
biological role of this unusual morphogenic
pathway.

C. tropicalis and C. parapsilosis

C. tropicalis is a common cause of infection
in intensive care units and is a particular prob-
lem in neutropenic patients (Negri et al. 2012;
Silva et al. 2012). The organism has a diploid
genome and, like C. albicans, has a parasexual
cycle (Porman et al. 2011; Seervai et al. 2013).
In addition, C. tropicalis switches from white
to opaque cells (Porman et al. 2013; Xie et al.
2013). However, there are also significant dif-
ferences between the species. White–opaque
switching in C. tropicalis is independent of mat-
ing type, whereas in C. albicans, isolates that are
heterozygous at the mating locus only switch
in very defined conditions (Xie et al. 2012; Por-
man et al. 2013). The Wor1 transcription factor
regulates the white–opaque switch in both spe-
cies, but other transcription factors appear to
be specific to C. albicans (Porman et al. 2011,
2013). The role of the white–opaque switch in
determining virulence of C. tropicalis is not yet
known.

C. parapsilosis is particularly associated with
infection of neonates (Chow et al. 2012; Pammi
et al. 2013). Drug resistance is a problem; iso-
lates are inherently less susceptible to echino-
candins because of amino acid substitutions in
the b-(1,3)-D-glucan synthase FKS gene (Gar-
cia-Effron et al. 2008). The species is more dis-
tantly related to C. albicans than is either C.
dubliniensis or C. tropicalis (Fitzpatrick et al.
2006). Close relatives include C. orthopsilosis
and C. metapsilosis, once characterized as be-
longing to the same species (Tavanti et al.
2005). C. orthopsilosis and C. metapsilosis are
much less frequent causes of infection than
C. parapsilosis (Table 1) and are less virulent
in animal models (Nemeth et al. 2013). Com-
paring the genomes of C. parapsilosis and C.
orthopsilosis suggests that amplification of
gene families, in particular of cell wall genes, is
associated with increased virulence of C. para-
psilosis (Riccombeni et al. 2012).

C. parapsilosis has a diploid genome, but the
level of heterozygosity is much lower than the
other diploid CTG species (Butler et al. 2009).
All isolates characterized to date have MTLa
idiomorphs at the mating-type locus, and mat-
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ing has not been observed in either C. parapsi-
losis or C. orthopsilosis (Sai et al. 2011). Some
characteristics, such as secretion of lipases, are
important for virulence in both C. albicans
and C. parapsilosis (Trofa et al. 2011). There
are, however, other species-specific traits. Bio-
film formation is an important for virulence in
both, and the Bcr1 transcription factor is a
major regulator (Nobile et al. 2006; Ding and
Butler 2007). However, the functions and/
or targets may be different; whereas Bcr1 regu-
lates expression of the CFEM cell wall family in
both species, the family is required for biofilm
development only in C. albicans (Ding et al.
2011).

White–opaque switching has not been ob-
served in C. parapsilosis isolates. However, col-
onies do undergo several types of morphologi-
cal switching (Lott et al. 1993; Laffey and Butler
2005; Kim et al. 2006). The transcription factor
Efg1 is a major regulator of switching from con-
centric to smooth colonies, and the switching
rate is dramatically increased when EFG1 is de-
leted (Connolly et al. 2013). Efg1 regulates fila-
mentation, white–opaque switching, and many
other phenotypes in C. albicans (reviewed in Liu
2002). Many of the targets are shared in C. para-
psilosis, suggesting that Efg1 is an ancient reg-
ulator of morphology (Connolly et al. 2013).
Notably, however, EFG1 is missing from C.
tropicalis (Fig. 2) (Porman et al. 2011). A second
transcription factor, UME6, is required for
filamentation (pseudohyphal growth) in C. para-
psilosis, C. tropicalis, and C. guilliermondii, in-
dicating that it is also a core regulator of mor-
phology in the CTG clade (Lackey et al. 2013).

OTHER CTG CLADE SPECIES

C. guilliermondii and C. lusitaniae are relatively
rare causes of human infection. C. guilliermon-
dii is of general interest to the biotechnology
sector, as a producer both of riboflavin and of
xylitol (Papon et al. 2013b), and several molec-
ular tools have been developed (Papon et al.
2012). The species is haploid and fully sexual,
which may facilitate genetic analysis. Resistance
to antifungal drugs is a growing problem (Sa-
vini et al. 2011).

C. lusitaniae has historically been associated
with reduced susceptibility to amphotericin B,
which may be related to altered expression of
ergosterol synthesis genes (Merz 1984; Hadfield
et al. 1987; Young et al. 2003). However, azole
therapies are effective (Hawkins and Baddour
2003). C. lusitaniae isolates are haploid and het-
erothallic; the mating pathway has been charac-
terized (Reedy et al. 2009), and gene disruption
tools have been developed (El-Kirat-Chatel et al.
2011; Zhang et al. 2012b). Molecular character-
ization is therefore likely to increase in the near
future.

The C. glabrata Species Group

C. glabrata is one of only two of the major Can-
dida pathogens that falls outside of the CTG
clade. The species is a common cause of can-
didiasis in immunosuppressed patients includ-
ing those suffering from HIV/AIDS, diabetes,
cancer patients undergoing chemotherapy, and
the elderly (Fidel et al. 1999). C. glabrata–asso-
ciated candidiasis largely occurs in the oral cav-
ity, and its incidence in older members of the
population has been linked to its ability to at-
tach to the acrylic surface of dentures as well
as increased suppression of the immune re-
sponse (Lockhart et al. 1999; Bagg et al. 2003;
Li et al. 2007).

Increasing incidence of C. glabrata infec-
tion also results from the increased use of pro-
phylactic antifungal treatment in immunosup-
pressed patients (Chakrabarti et al. 2009; Lee
et al. 2009). C. glabrata exhibits low-level resis-
tance to the antifungal agent fluconazole; pro-
phylactic exposure to fluconazole can induce
resistance, as well as lead to cross-resistance to
other related azoles (Panackal et al. 2006). Most
resistant isolates have gain-of-function muta-
tions in the PDR1 transcription factor, which
regulates expression of the multidrug transport-
ers’ CDR genes (Vermitsky and Edlind 2004;
Tsai et al. 2006; Vermitsky et al. 2006). PDR1
is also required for adherence and for virulence
(Ferrari et al. 2011; Vale-Silva et al. 2013). Re-
sistance to echinocandins is associated with
mutations in the FKS1 and FKS2 genes (Gar-
cia-Effron et al. 2009; Alexander et al. 2013).
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Sequencing the C. glabrata genome in 2004
revealed that there was widespread gene loss
relative to S. cerevisiae, including the galac-
tose, phosphate, and nicotinic acid metabolism
(BNA) pathways (Dujon et al. 2004). There was
also a significant expansion of the EPA family
of glycolipid proteins and of the YPS family
of GPI-linked aspartyl proteases, which are re-
quired for virulence (De Las Penas et al. 2003;
Kaur et al. 2007). Expression of the subtelomeric
EPA adhesins is usually silenced, except during
infection of the urinary tract (Domergue et al.
2005). Limitation of nicotinic acid in urine (and
lack of the BNA pathway) leads to a reduction
in NADþ, required for activity of the histone
deacetylase Sir2. The resulting change in chro-
matin structure induces expression of the EPA
genes, leading to increased adherence.

The evolution of pathogenicity in C. glab-
rata is of particular interest because, until re-
cently, it was believed to be the only pathogenic

yeast species belonging to the WGD group of
the Saccharomycetaceae (Fig. 1). It has now,
however, been joined by C. bracarensis and C.
nivariensis (Alcoba-Florez et al. 2005; Correia
et al. 2006). Gabaldón et al. (2013) recently se-
quenced the genomes of C. bracarensis and C.
nivariensis and of three related but nonpatho-
genic species, Nakaseomyces bacillisporus, Can-
dida castellii, and Nakaseomyces delphensis (Fig.
1). Interestingly, C. bracarensis and C. nivariensis
are more closely related to the nonpathogenic
N. delphensis than they are to C. glabrata. N.
bacillisporus and C. castellii form a separate
and more distantly related group (Fig. 1).

One of the first observations was that loss of
the nicotinic acid pathway is common to all of
the sequenced genomes and is not unique to
C. glabrata, as previously assumed (Domergue
et al. 2005). This is also true for the galactose,
phosphate, and other gene clusters. In addition,
there is evidence for accelerated evolution in
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Figure 2. Visualization of EFG1 orthologs in the Candida Gene Order Browser. The diagram shows a screenshot
from CGOB (cgob.ucd.ie; Fitzpatrick et al. 2010; Maguire et al. 2013) around the EFG1 gene in CTG clade
species. Each horizontal line shows a chromosomal region, and each pillar indicates orthologs. All genes are
shown at the same size. Breaks in synteny are indicated by changes in color. EFG1 lies between a tRNA gene
(white) and orthologs of orf19.607 in most species (C. albicans isolates have an additional gene). In C. tropicalis,
there has been an inversion adjacent to the tRNA relative to C. albicans (indicated by gray lines with orange tips),
and EFG1 has been lost.
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the lineage leading to the glabrata group (the
three pathogens plus N. delphensis). Gabaldón
et al. (2013) suggested that some of these
changes may be “preadaptations” that enabled
pathogenicity, rather than direct adaptations to
the human host. These findings highlight the
importance of sequencing the genomes of mul-
tiple species to avoid erroneous conclusions
from, for example, simply comparing C. gla-
brata to S. cerevisiae.

Expansion of the EPA genes is mostly re-
stricted to the pathogens and appears to have
occurred in a lineage-specific manner. C. bra-
carensis and C. nivariensis share many EPA du-
plications, suggesting they may have occurred in
the common ancestor and were subsequently
lost (or possibly pseudogenized) in the non-
pathogen N. delphensis. Amplification in C.
glabrata occurred independently. Correlation
of EPA expansion with pathogenesis and the
observation that they are required for adherence
in C. glabrata suggest that this family is impor-
tant for virulence. The C. glabrata genome also
has expanded YPS and MNT3 arrays, predicted
to be involved in carbohydrate metabolism. It
is therefore likely that C. glabrata has undergone
species-specific gene amplification, which may
explain why it is significantly more virulent
than the other pathogenic species within the
Nakaseomyces group.

One difficulty with this analysis is the defi-
nition of pathogenesis: C. bracarensis and C.
nivariensis are rare, but their emergence is likely
a result of improved detection methods due
to sequence analysis. Another important factor
is opportunity. Species defined as nonpatho-
genic, because they are not isolated from clin-
ical settings, may cause infection if they came
into contact with a human host. Interpretations
may also change as additional genomes are se-
quenced. Gabaldón et al. (2013) postulated that
the Nakaseomyces group evolved from an ances-
tral environmental yeast; gene loss and amplifi-
cations enabled growth as commensals in hu-
mans, and some species independently evolved
into opportunistic pathogens. Similar to yeasts
of the CTG clade, the evolution of pathogenic-
ity is associated with changes in genes involved
in cell adhesion, carbohydrate metabolism, the

hypoxic response, and phosphate starvation,
enhancing the ability of the yeasts to survive in
the host environment.

CONCLUDING REMARKS: THE FUTURE
OF GENOMICS IN Candida

Improvements in genome sequencing have been
paralleled by improvements in genome annota-
tion, particularly for C. albicans and other spe-
cies in the CTG clade. Use of RNA-seq and high-
resolution tiling arrays has led to the correction
of many open reading frames (ORFs) and the
identification of hundreds of novel transcrip-
tionally active regions that may represent struc-
tural or regulatory RNAs (Bruno et al. 2010;
Sellam et al. 2010; Tuch et al. 2010). Strand-
specific RNA sequencing has revealed that the
50 end of transcripts that are differentially ex-
pressed between white and opaque cells are par-
ticularly long (Tuch et al. 2010). RNA-seq data
has provided experimental evidence for the
presence of introns and identified several that
had not been predicted computationally (Mi-
trovich et al. 2007).

RNA-seq analysis has also been important
for annotation of other genomes, such as C.
parapsilosis (Guida et al. 2011) and C. dublin-
iensis (Grumaz et al. 2013). In C. parapsilosis,
several hundred new genes were identified, and
approximately 900 gene models were corrected
(Guida et al. 2011). It is becoming increasingly
clear that the high level of unknown transcripts,
or even antisense transcripts, in Candida species
is indicative of a layer of regulation that is at
present almost completely unexplored and is
likely to be an important focus in the future.
Even in the absence of transcriptional data,
however, comparative genomics applications
are very useful for identifying protein-coding
regions. For example, comparing the genomes
of six species in the CTG clade led to the iden-
tification of 91 novel ORFs in C. albicans (Butler
et al. 2009). A more detailed analysis uncovered
more than 1500 previously unannotated ORFs
in 13 genomes (Maguire et al. 2013) (Fig. 2).

Tools pioneered in S. cerevisiae are now be-
ing applied to C. albicans and hopefully to other
Candida species also. Several collections of gene
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disruptions and gene knockouts have been gen-
erated in C. albicans and, together with gene
expression profiling and chromatin immuno-
precipitation, have been applied to identifying
networks involved in adhesion, biofilm forma-
tion, virulence, and more (Chen et al. 2011;
Finkel et al. 2012; Nobile et al. 2012; Pande
et al. 2013; Perez et al. 2013). The developments
of an overexpression library and constitutively
activated transcription factors are also exciting
(Chauvel et al. 2012; Schillig and Morschhauser
2013). Characterization of stable haploids of
C. albicans will open up huge new areas of re-
search and may allow the application of meth-
ods such as synthetic genetic arrays, although a
meiotic cycle is required to fully exploit these
approaches (Baryshnikova et al. 2010). We will
no doubt see a major increase in sequencing
individual isolates from a single species, which
will facilitate analysis of clade-specific traits
(Engel and Cherry 2013). The future will bring
an explosion in data availability, and the chal-
lenges that come with dealing with it.
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