
Journal of the Mechanics and Physics of Solids 124 (2019) 489–504 

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

Defect Sensitivity of Truss Strength 

Ryan M. Latture, Matthew R. Begley , Frank W. Zok 

∗

Materials Department, University of California, Santa Barbara, CA 93106, United States 

a r t i c l e i n f o 

Article history: 

Received 11 June 2018 

Revised 9 October 2018 

Accepted 23 October 2018 

Available online 2 November 2018 

Keywords: 

Cellular solids 

(A) fracture 

(A) stress concentrations 

(C) finite elements 

a b s t r a c t 

Periodic trusses with missing or defective struts may exhibit reduced strength relative to 

those of otherwise pristine trusses. The principal goal of the present study is to determine 

the extent to which individual strut defects and free surfaces, both separately and together, 

elevate strains in neighboring struts and, in turn, the effects of strain elevations on truss 

strength, especially in trusses made from elastic-brittle materials. The goals are pursued 

through finite element analyses of three stretch-dominated truss structures with low rel- 

ative density under uniaxial compressive loading. In all cases considered, strain elevations 

due to bulk defects (distant from free surfaces) are comparable to or lower than those as- 

sociated with the surfaces themselves. Although defects located at truss corners and truss 

edges cause the highest elevations in strut strains, their effects on truss strength are small 

(5–25%). Guidelines are presented for the minimal tensile fracture strain of the constituent 

material required to achieve the full strength potential of the truss, dictated by large-scale 

strut buckling. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Well-designed periodic trusses exhibit specific stiffness and specific strength that are superior to those of stochastic

foams ( Bauer et al., 2014; Gurtner and Durand, 2014; Latture et al., 2018a; Messner, 2016; Wadley et al., 2003 ). They can

also be designed for high energy absorption capacity ( Asadpoure et al., 2017; Evans et al., 2010; Hammetter et al., 2013;

Ostos et al., 2012; Tancogne-Dejean et al., 2016; Zheng et al., 2012 ). Although complex by standards of conventional manu-

facturing operations, periodic trusses with almost any topology can now be made by one of numerous additive manufactur-

ing (AM) routes. Indeed, AM has enabled fabrication of previously-unimaginable structures over length scales ranging from

micrometers to meters. 

The present study addresses one specific aspect of truss performance: that of defect sensitivity of compressive strength.

It is motivated by numerous studies showing that truss properties often fall short of theoretical predictions, a consequence

of defects and imperfections introduced during manufacturing. In one study, effects of strut waviness in woven metal trusses

were found to produce a knock-down in compressive stiffness and compressive strength of about 20% relative to those ob-

tained in corresponding structures with straight struts ( Queheillalt et al., 2007 ). Such effects are well-predicted by analytical

and finite element models that account for deviations in strut orientations relative to their ideal values and the resulting

axial and bending stresses produced within these struts. In another, variations in strut geometry in hollow-microtube truss

structures were measured and the results used to build a stochastic model of geometric imperfections ( Salari-Sharif et al.,

2018 ). In turn, through Monte Carlo simulations and finite element analyses, the critical buckling loads were computed for
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many instantiations of strut geometry. The results were used to rationalize large deviations in strength from the theoretical

values for perfectly uniform trusses as well as large statistical strength variations from sample to sample. Yet other studies

have found imperfections in the form of progressive changes in strut diameter and local strut properties in polymeric trusses

made by a self-propagating photocuring method ( Rinaldi et al., 2012; 2013 ). Analogous effects of geometric imperfections on

the mechanical response of solid-strut Ti-alloy trusses fabricated by selective electron beam melting ( Campoli et al., 2013 )

and selective laser melting ( Liu et al., 2017 ) have also been reported. In another computational study, the stiffness and yield

strength of an octet-truss panel were found to decrease approximately linearly with the fraction of struts removed from the

truss ( Wallach and Gibson, 2001 ). Similar results have been reported for the effects of missing wall members on the mod-

ulus, elastic buckling strength and plastic collapse strength of Voronoi honeycombs ( Silva and Gibson, 1997 ) and hexagonal

honeycombs ( Guo and Gibson, 1999 ). 

Defect sensitivity of truss properties may also be affected by the predominant deformation mode: that is, whether the

truss is stretch-dominated or bend-dominated. For example, the elastic moduli of 2-dimensional triangular trusses are min-

imally affected by random removal of struts ( Liu and Liang, 2012; Symons and Fleck, 2008 ). This is because the starting

truss is stretch-dominated and, in the presence of a small number of defects, remains essentially stretch-dominated for all

loading states. In contrast, the behavior of 2-dimensional hexagonal trusses depends on the nature of the macroscopic stress

state. When loaded in shear, the truss is bend-dominated and therefore its shear modulus is extremely low; removing struts

only reduces the shear modulus slightly ( Symons and Fleck, 2008 ). But, when loaded hydrostatically, it deforms entirely

by strut stretching. Here, removal of even a small number of struts triggers a transition from stretch- to bend-dominated

deformation and a precipitous drop in the bulk modulus ( Chen et al., 1999 ). For example, when 10% of struts are randomly

removed from such a truss, the computed bulk modulus decreases by nearly three orders of magnitude ( Symons and Fleck,

2008 ). 

Viewed from a different perspective, the extent to which defects affect truss properties may be influenced by the na-

ture of the failure mechanism. For example, if the load-bearing capacity is dictated by elastic strut buckling , the presence

of a small number of missing struts should not significantly affect truss strength. Although missing struts may cause strain

elevations in neighboring struts and lead to premature buckling of the affected struts, eventually all remaining compres-

sive struts also buckle, each supporting nominally the same load. In this case, the truss strength is reduced by an amount

proportional to the fraction of missing struts ( Wallach and Gibson, 2001 ). In contrast, if failure occurs by brittle fracture of

struts that experience tensile stresses, the strain elevations around a single missing strut may initiate fracture of neighboring

struts, possibly leading to a cascade of further strut fractures and ultimately complete truss failure. Here, the load-bearing

capacity of the truss would be determined by extreme values of tensile stresses within the struts and would follow weakest

link scaling laws. Failure via plastic strut yielding is likely to exhibit an intermediate sensitivity to strut defects. That is, local

strain elevations may trigger strut yielding in regions adjacent to strut defects which, in turn, may lead to plastic buckling

before the remaining struts have yielded. Because of the strain softening inherent to plastic buckling, the process is likely

not as benign as elastic buckling (where buckled struts sustain essentially a constant load); but it is likely to spread in a

more progressive manner relative to that associated with strut fracture (where failed struts have no load-bearing capacity). 

Free surfaces of trusses are, themselves, defects. Because of reduced nodal connectivity at surfaces, strut strains may be

elevated relative to those in the bulk ( Fleck and Qiu, 2007 ). Finite element simulations for the { FCC } (octet) truss have shown

that struts oriented perpendicular to the loading direction and situated along the edges experience strains that are as much

as 50% greater than those of equivalent struts in the bulk ( Latture et al., 2018a; Messner, 2016 ). These strain elevations have

been confirmed by experimental measurements of strut strains using digital image correlation ( Latture et al., 2018b ). These

measurements also confirm that the strains in the affected tensile struts are almost entirely due to axial deformation; the

contributions from bending are negligible, as predicted by the simulations. They further show that the strains in compressive

struts situated at the truss corners experience significant bending, with bending strains comprising up to 50% of the peak

principal strut strains. 

The goal of the present study is to determine the effects of individual strut defects and free surfaces, both separately

and together, on strains in neighboring struts and the effects of strain elevations on the strength of three elastic-brittle,

stretch-dominated truss structures. The article is organized in the following way. The truss topologies and defect types are

described in Section 2 . Finite element (FE) models are described in Section 3 . Results for strut strain distributions in the

elastic (pre-buckling) domain are summarized in Section 4 . The nonlinear responses of the trusses, wherein struts buckle

and/or fail in tension, are presented in Section 5 . The implications for truss design and topology selection are noted in

Section 7 . 

2. Truss topologies and defect types 

The three truss structures of present interest are: (i) the octet truss, denoted { nFCC } 3 , (ii) the binary truss 60% { nBCC } 3 |

40% { nSC } 3 ; and (iii) the binary truss 80% { nFCC } 3 | 20% { nSC } 3 . Here { BCC }, { SC } and { FCC } refer to the elementary trusses

based on body-centered cubic, simple cubic and face-centered cubic lattices, respectively; the percentages refer to volume

fractions of material allocated to the constituent elementary trusses; the exponent 3 denotes that unit cells are tiled in 3

dimensions; and n is the lineal number of unit cells in each of the three tiling directions ( Zok et al., 2016 ). Examples of the

three trusses, each with n = 2 , are shown in Fig. 1 . 
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Fig. 1. Cubic truss structures at a relative density ρ = 0 . 05 . Unit cells are indicated by darker colors. 

Fig. 2. Locations of surface, edge and corner defects in (a) {5 FCC } 3 , (b) {5 SC } 3 and (c) {5 BCC } 3 trusses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two binary trusses are elastically isotropic and exhibit the maximal possible stiffness for strut-based trusses. Their

elastic properties are E/E o ρ = 1 / 6 , G/E o ρ = 1 / 15 and ν = 1 / 4 , where ρ is relative density, E is Young’s modulus, G is shear

modulus, ν is Poisson’s ratio, and E o is the Young’s modulus of the parent material ( Gurtner and Durand, 2014; Latture et al.,

2018a ). In contrast, the { nFCC } 3 truss is elastically anisotropic, with Young’s moduli varying from a low of E/E o ρ = 1 / 9 in

[100]-type directions to a high of E/E o ρ = 1 / 5 in [111]-type directions ( Deshpande et al., 2001 ). 

Strut types are denoted according to the system laid out in ( Latture et al., 2018a ). In { FCC } trusses, type I struts are

aligned with [110] and [1 ̄1 0] directions, type II are aligned with [101] and [10 ̄1 ] directions, and type III are aligned with

[011] and [01 ̄1 ] directions. Under compressive loading along the [100] direction, both type I and type II struts are oriented

at 45 degrees to the compression direction and experience equivalent compressive strains. (The distinction between type

I and type II struts is only necessary when considering shear loading, wherein the two strut types are loaded in opposite

directions: one in compression and the other in tension. For compressive loading, both are treated as type I struts.) Type III

struts are perpendicular to the compression direction and experience axial tension. In { SC } trusses, type IV struts are aligned

with the [100] (loading) direction while type V struts are aligned with the [010] and [001] directions: the latter being loaded

in tension when the truss is loaded in compression along the [100] direction. In { BCC } trusses, type VI struts are aligned with

[111] and [ ̄1 11] directions while type VII are aligned with [1 ̄1 1] and [11 ̄1 ] directions. (Here again the distinction between

the two strut types is only necessary for shear loading. In compression the two are identical and are treated here as type

VI struts.) Table 1 shows struts of each type and their axial strains in an infinite truss ( n = ∞ ) ( Latture et al., 2018a ). 

Defect types are similarly denoted by the type of missing strut (I, III, IV, V and VI). Defects are further distinguished by

their locations: bulk defects being in the truss interior (far from the free surfaces), surface defects on one of the external

faces parallel to the loading direction, edge defects at the intersections of two external faces, and corner defects at one of

the 8 truss corners. In the subsequent analyses, surface defects are placed at the center of one of the external faces and

edge defects are placed along the mid-point of an edge. Locations of surface, corner and edge defects are shown in Fig. 2 . 
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Table 1 

Strut types and axial strut strains for uniaxial compressive loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Finite element methods 

Trusses were discretized using Timoshenko beam elements with circular cross-section. All struts of each elementary truss

were assigned equal cross-sectional area, determined by the volume fractions of the constituent trusses. The strut material

was assumed to be linear elastic up to fracture. Simulations were performed for trusses with relative densities ρ = 0 . 01 or

0.05, although the normalizations introduced below allow the results to be generalized for other values of relative density.

Defects were introduced by removing individual struts of the designated type. Compressive loads were applied along the

[100] direction, hereafter denoted as the 1-axis. Models were processed using the commercial package Abaqus (Version

6.13-EF4, Dassault Systèmes, Providence, Rhode Island). 

Both linear and non-linear simulations were performed. For the linear simulations, nodal displacements were prescribed

on opposing faces of the model: u = ε1 L at x = L and u = 0 at x = 0 , where u is nodal displacement along the 1-axis, x is

the position on the 1-axis, ε1 is the strain in the 1-direction and L is the length of the truss along the principal directions.

This yields uniaxial compressive loading along the [100] direction. 

For the nonlinear simulations (incorporating effects of elastic strut buckling), nodal velocities (instead of displacements)

were prescribed on one face: ˙ u = ˙ εL at x = L where the dots represent derivatives with respect to time. The opposing face

was fixed ( u = 0 at x = 0 ). Rigid body motion was prevented by pinning the node at the origin, i.e. u = v = w = 0 at (0, 0, 0)

where v and w are nodal displacements in the 2- and 3-directions, respectively, and by assigning w = 0 to the node at (0, L ,

0). Velocities were selected to yield quasi-static strain rates ( | ̇ ε| = 10 −3 s −1 ). To reduce computation time, the mass density

in the nonlinear simulations was artificially increased by a factor of 10. To minimize oscillations following tensile failure,

damping was introduced in the form of linear bulk viscosity. The viscosity generates a pressure, p = ξρo c d l e ̄εv ol , where ξ is

a damping coefficient (taken to be ξ = 0 . 48 ), ρo is mass density, c d is the dilatational wave speed, l e is the length of the

element and ε̄v ol is the volumetric strain rate. To confirm that the loading was quasi-static (prior to strut failure), the ratio

of kinetic energy to potential energy was computed at each time step and found to be less than 10 −2 . 

Two truss sizes were studied. The first, with n = 11 , was used to assess the effects of bulk defects in essentially infinite

trusses. Here strut defects were placed at the truss center. Using linear simulations, the principal strains in all struts in both

the pristine and the defect-containing trusses were calculated from the strain components derived from axial, bending and

torsional deformation modes on the strut surfaces. We find, however, that maximum principal strains in the linear elastic
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domain are dominated by axial strains; bending and torsional modes contribute minimally. The size of the affected region

around the bulk defects was characterized by the distance from the centroid of the defect to the centroid of the farthest

strut in which the principal strains differ by at least 5% relative to that in the same strut within a pristine truss. 

A second set of linear simulations was performed for n = 5 . In this case, defects were placed on either bulk, surface, edge

or corner sites. Here again the principal strains were computed for all struts in both pristine and defect-containing trusses.

The objective of these simulations was to ascertain, both separately and together, the effects of free surfaces and strut

defects on local strut strains. Because of reduced nodal connectivity of struts at free surfaces, such struts also experience

strain elevations. In this context, surfaces themselves serve as defects, competing with missing struts to determine which

ultimately dictates strength. 

Results for peak values of maximum and minimum principal strains, εmax and εmin , respectively, are couched in two

normalized forms. For tensile struts they are k max ≡ εmax /εo 
max and εmax /ε1 = k max εo 

max /ε1 where εo 
max is the maximum strain

that would be obtained in an equivalent strut in the absence of a defect, ε1 is the macroscopic axial strain, and k max is the

strain concentration factor; for the compressive struts they are k min ≡ εmin /ε
o 
min 

and εmin /ε1 = k min ε
o 
min 

/ε1 where εo 
min 

is the

largest minimum principal strain that would be obtained in an equivalent strut in the absence of a defect and k min is the

corresponding strain concentration factor. Although the former of each pair (the strain concentration factors) represent the

relative effects of defects on the neighboring fields, the latter of each pair, when compared to values for other struts in the

same truss, provide a more informative indicator of which defects are likely to dominate failure. 

To determine the separate effects of free surfaces and strut defects, strut strains are also couched in terms of minimum

and maximum principal strains due to free surfaces, εedge 
min 

and εedge 
max , and those due to a single strut defect, εde fect 

min 
and εde fect 

max .

When εde fect 
max /εedge 

max < 1 , bulk strut defects are not expected to be strength-limiting. 

All nonlinear simulations were performed for n = 5 (larger truss sizes being somewhat prohibitive in terms of compu-

tation time). Although the size of the truss is smaller than that of the linear simulations, strain amplification due to free

surface effects are nearly equivalent to those of the larger truss ( Latture et al., 2018a ). The goal of these simulations was to

determine the effects of defects on both buckling of struts in compression and fracture of struts in tension. Tensile fracture

was assumed to occur when the maximum principal strain in the tensile struts exceeds a critical value at any point in an

element. The broken element was then removed from the model. 

To accurately determine the sequence of strut fractures, the nonlinear simulations were performed in two steps. In the

first, the state of the system was recorded at 100 equally-spaced time increments, up to a macroscopic strain of 1%. From

this data, the increment of time (usually within a single time step) over which most failures occurred was identified. The

simulations were then repeated, in this case with the state of the system being saved in 10 0 0 equally-spaced time incre-

ments within the interval in which the failure events occurred. 

In order to probe transitions from buckling-dominated to fracture-dominated domains, the tensile failure strains selected

for this study were based on the expected strains required for strut buckling, using the { FCC } truss as a baseline, in the

following way. In the { FCC } truss, type I struts buckle at an axial strut strain εa = ρ/ 6 , essentially independent of truss size

( Latture et al., 2018a ). Within the bulk of a large truss, the axial tensile strains in type III struts are of equal magnitude

( εa = ρ/ 6 ). At free surfaces, however, the reduced nodal connectivity leads to a 50% elevation in strut strain, yielding εa =
ρ/ 4 ( Latture et al., 2018b ). Neglecting bending strains, the expectation therefore is that, when the tensile failure strain is

ε f = ρ/ 4 , buckling of type I struts and tensile failure of near-surface type III struts should occur simultaneously. Accordingly,

most simulations were performed using one of four tensile failure strains: two below and two above the expected critical

value, notably ε f /ρ = 0 . 048 , 0.24, 0.48 or 0.96. The same values of fracture strains were employed for all truss types. To

capture the transition from fracture- to buckling-dominated failure in each truss, additional FE simulations were performed

with εf / ρ ranging from 0.097 to 1.34. Baseline simulations were also performed without a prescribed failure strain, i.e. for a

purely linear-elastic material. 

The results are expressed in terms of stress normalized by E o ρ2 and strain normalized by ρ ( Latture et al., 2018a ).

These normalizations yield the expected scalings in properties: notably, stiffness proportional to E o ρ and buckling strength

proportional to E o ρ2 . Provided ρ is sufficiently small and failure is buckling-dominated (that is, neither yielding nor fracture

intervene), the results in this form are, to a very good approximation, independent of ρ and E o . 

4. Elastic strain concentrations 

4.1. Role of free surfaces 

The maximum tensile strains in the { FCC } truss (absent defects) are obtained in type III struts located along the truss

edges (arrows in Fig. 3 a). Here the peak strains and strain concentrations are εmax /ε1 = −0 . 51 and k max = 1 . 53 ( Table 3 ). But

the effects are highly localized; neighboring struts experience only slight strain elevations while those more than 2 strut

lengths from the defect location are almost unaffected. 

The maximum tensile strains in the { FCC }|{ SC } truss also occur in type III struts located near the truss edges, but offset

by a distance of one strut length from the edge itself (arrows in Fig. 3 b). Here the peak strains are considerably smaller:

εmax /ε1 = −0 . 36 ( Table 3 ). Strain elevations are also obtained in the type V struts within the { SC } sub-truss located along the

free surfaces, although their magnitudes are even smaller ( εmax /ε = −0 . 28 ). In the { BCC }|{ SC } truss, the peak tensile strains
1 
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Fig. 3. (a) The greatest strain concentrations in tensile struts within the { FCC } truss are largely confined to the edge struts (shown here in cross-sections 

transverse to the loading directions, at two distances from one of the loaded faces: x/a = 1 and 5). (b, c) The greatest strain concentrations in the two 

binary trusses are similarly obtained at the truss edges, but their magnitudes are somewhat smaller. Arrows indicate struts with the maximum strain 

concentration factor within each plane. Due to the cubic symmetry of the trusses, only one quadrant of each cross-section is shown. Thick dashed lines 

indicate lines of symmetry. [Videos showing sections at distances that, in totality, comprise data for all tensile members in the truss can be found in 

Supplementary Information (Vid. S1-S3).] 

 

 

 

 

 

 

 

 

 

are obtained in type V struts located at the free surface and oriented perpendicular to those surfaces ( εmax /ε1 = −0 . 29 ,

Fig. 3 c, Table 3 ). 

4.2. Bulk defects in infinite trusses 

As we show presently, elevations in the minimum principal strains around strut defects do not affect the buckling re-

sponse and thus the following discussion focuses on tensile struts alone. (Notwithstanding, the minimum principal strains

may be relevant to scenarios in which failure involves strut yielding and are therefore included for completion, in Tables 2

and 3 ). 

Bulk defects are most benign in the { FCC } truss ( Tables 2 and 3 ). The maximum tensile strains in type III struts increase

by 25% and 12% around type I and type III defects, respectively. The strain elevations persist over distances of 2 strut lengths

(or 1.4 unit cell lengths). Most importantly, the strain elevations are smaller than those in struts located at the free surfaces.

The inference is that, when truss failure is fracture dominated, bulk defects should play almost no role in truss strength. 

In the binary trusses, only type IV defects (within the { SC } truss) result in peak tensile strains that exceed those due

to free surfaces. In the { FCC }|{ SC } truss, peak tensile strains (in type III struts) increase by 50% around a type IV defect,
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Table 2 

Struts with at least a 5% change in principal strain due to the presence of a defect (shown in black). Colors of intact struts 

represent minimum or maximum principal strut strains. 

Table 3 

Effects of bulk defects on principal strut strains. 

Shaded numbers are those most relevant to discussion in the text. 

 

 

 

 

 

 

exceeding the maximum tensile strain at the edges by 5%. In the { BCC }|{ SC } truss, the peak tensile strains due to a type IV

defect exceed those due to the free surfaces by about 15%. 

4.3. Defects in finite trusses 

The effects of defects in finite trusses depend on defect location ( Fig. 4 ). In the {5 FCC } 3 truss, the effects of a center

defect are identical to those at the center of the larger ({11 FCC } 3 ) truss ( Tables 2 and 4 ): both yielding peak strains lower

than those at the free surfaces. Defects at corners, edges and surfaces are similarly benign. 

In the { BCC }|{ SC } truss, type IV defects have the greatest effect, with the strains in surrounding struts being greater than

that due to the surfaces for all defect locations ( Fig. 5 ). Among the possible locations, the edge site is most deleterious; the

local strut strain there is about 19% greater than that at the free surfaces in the absence of defects. In the { FCC }|{ SC } truss,
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Fig. 4. Strain elevations around type I strut defects in the { FCC } truss depend on defect location, the maximum occurring when the defect is at a truss 

corner. The effects persist over distances of about two strut lengths. Only struts that experience a strain change ≥ 5% are shown. Arrows indicate missing 

struts. 

Fig. 5. Strain elevations around type IV strut defects in the {5 BCC } 3 |{5 SC } 3 truss depend on defect location. Although the strain concentrations are modest, 

they persist over lengths approaching (in this case) the entire truss. Only struts that experience a strain change ≥ 5% are shown. Arrows indicate missing 

struts. 

 

 

 

 

type I and type IV defects also yield local strains exceeding those of the free surfaces. The most extreme case is that of a

type IV edge defect; the local strains there are 59% greater than those due to the free surfaces alone. 

5. Failure response of finite trusses 

Coupled effects of defect type, defect location and tensile failure strain on the compressive stress-strain response of the

three trusses are shown in Fig. 6 . Two combinations of defect type and defect location were considered for each truss type.

The selected combinations produce the greatest tensile strain elevations ( Table 4 ). The variation in truss strength with failure

strain (absent strut defects) is plotted on Fig. 7 . 
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Fig. 6. Stress-strain responses of the three trusses exhibit varying degrees of non-linearity, dependent on truss topology and material failure strain; the 

presence of strut defects and their locations within the truss play secondary roles. (a) The {5 FCC } 3 truss undergoes a single buckling event at essentially a 

single stress, thereby producing effectively elastic-”perfectly plastic” response. (b, c) The two binary trusses undergo two buckling events, each associated 

with one of the two compressive strut populations. (The second buckling event in the {5 BCC } 3 |{5 SC } 3 truss occurs slightly beyond the maximum strain 

shown, at about ε1 / ρ ≈ 1.5.) 
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Table 4 

Effects of defects on tensile strut strains in finite trusses. 

Shaded numbers are those most relevant to discussion in the text. 

 

 

 

 

 

 

5.1. { FCC } truss 

The intrinsic response of the { FCC } truss is essentially elastic-“perfectly plastic”. That is, buckling occurs in all compressive

struts over a narrow strain range; thereafter, the stress needed for continued buckling remains constant. When the material

failure strain is taken as ε f /ρ = 0 . 24 , strut failure initiates essentially at the point of incipient buckling, where the stress-

strain curve just begins to display slight non-linearity. Once buckling initiates, bending of the most critically-loaded struts

leads to strut fracture. Failure initiates in tensile struts near the corners and then proceeds diagonally along a (111)-type

plane (Vid. S4). Corner defects do not alter the failure response, except that the failure initiation site is shifted slightly

towards the defect (Vid. S5–S6). 
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Fig. 7. Compressive strengths of the three trusses transition from being fracture-dominated to buckling-dominated as the material failure strain increases. 

In the former domain, truss strength is linear with failure strain (indicated by inclined dashed lines, from Eq. 1 ); in the latter, it is independent of failure 

strain (indicated by horizontal dashed lines). In the { FCC } truss, the transition occurs over a relatively narrow range of failure strains ( ε f /ρ = 0 . 25 to 0.5.). In 

contrast, the transitions in the two binary trusses are gradual, spanning a range of failure strains of about an order of magnitude (roughly, from ε f /ρ = 0 . 1 

to 1). In the { BCC }|{ SC } truss in particular, the failure strain needed to attain the full strength is ε f /ρ = 1 . 5 . 

Fig. 8. The principal strain in the first tensile strut to fail in the { FCC } truss is initially due entirely to axial deformation. Once the neighboring compressive 

struts buckle, the axial strain in the tensile strut remains constant; further increases in the maximum principal strain are due to nodal rotations resulting 

from buckling and, in turn, to strut bending. The curves terminate once the strut strain reaches its failure strain which, in this case, is ε f /ρ = 0 . 48 . 

 

 

 

 

 

 

 

 

 

 

 

Doubling the material failure strain (to ε f /ρ = 0 . 48 ) increases the truss failure strain by only a small amount. This is

because, once large-scale buckling occurs, nodal rotations and corresponding bending strains in the tensile members increase

rapidly, bringing those struts to criticality with only small amounts of additional applied strain ( Fig. 8 ). Here again the

failure sequence initiates at the corner and proceeds along type III struts within (111)-type planes (Vid. S7). Somewhat

larger (though not proportionate) gains in truss failure strain are made when the material failure strain is doubled again (to

ε f /ρ = 0 . 96 ). In this case, failure occurs well within the plateau associated with large-scale buckling. 

In contrast, when the material failure strain is reduced five-fold from the baseline value (that is, from ε f /ρ = 0 . 24 to

ε f /ρ = 0 . 048 ), both the failure strain and the failure stress of the truss decrease proportionately. In this domain, failure

occurs while the tensile struts experience only axial strains (with minimal bending); since these strains are proportional to

the applied strain, it follows that truss strength varies linearly with the material failure strain. Since truss fracture occurs

almost immediately after the first strut failure, the ultimate strength is expected to follow in accordance with 

σ f /E o ρ
2 = (E/E o ρ)(ε1 /εa k max )(ε f /ρ) (1)

where, for the { FCC } truss, E/E o ρ = 1 / 9 , εa /ε1 = 1 / 3 and k max = 1 . 5 . This prediction, superimposed on Fig. 7 , agrees very

well with the computed strengths. 
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Fig. 9. The compressive failure mode of the { FCC } truss transitions from buckling of the compressive struts to fracture of the tensile struts at a critical 

point dictated by relative density and material failure strain. Accompanying the transition is a change in the sensitivity of strength to relative density, from 

quadratic to linear. (Dashed lines are analytical predictions, from Eq. 1 ; symbols are from FEA.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The preceding behavioral transition (at a critical material failure strain) is also manifested as the relative density is varied.

The latter transition is shown in a plot of strength vs. relative density ( Fig. 9 ). At low values of ρ , the strength is buckling-

dominated and proportional to ρ2 . In contrast, at high values of ρ , the strength is fracture-dominated and proportional to ρ .

The transition occurs at a critical value of ρ that depends on material failure strain. From Eq. 1 and the computed buckling

strength ( σ f /E o ρ2 = 0 . 056 ), the transition is expected at ε f /ρ = 0 . 25 . 

Strut defects, even when located in the most deleterious locations, have remarkably small effects on strength of the

{ FCC } truss (typically ≤ 5%). This is because strain concentrations associated with the surfaces are generally greater than

those around strut defects. 

5.2. Binary trusses 

The behaviors of the two binary trusses differ from that of the { FCC } truss in three ways. First, the intrinsic responses

of the binaries involve two sets of buckling events: one each for the { SC } and either the { FCC } or { BCC } constituent trusses.

The limit stress for the { FCC }|{ SC } truss is about 20% lower than that of the { FCC } truss. This reflects the volume fraction of

material allocated to the { SC } truss, the latter bearing minimal load after buckling. Additionally, the material failure strain

needed to reach the limit stress is considerably higher than that in the { FCC } truss. This is because buckling of the first set

of struts (within the { SC } truss) induces bending in the tensile struts and therefore accelerates failure. The limit stress for

the { BCC }|{ SC } truss is marginally greater than that of the { FCC } truss. But here again buckling of the { SC } truss (at about 70%

of the limit stress) induces bending in the tensile struts. Attaining the full strength potential therefore requires materials

with higher failure strains (by a factor of about 5 relative to that needed for the { FCC } truss). 

Second, in the domain in which the material failure strain is small, the strength is again proportional to the material

failure strain, in accordance with Eq. 1 ; here E/E o ρ = 1 / 6 for both binary trusses, and εa /ε1 = −0 . 35 and −0 . 32 for the

{ FCC }|{ SC } and the { BCC }|{ SC } trusses, respectively. Here the { BCC }|{ SC } truss emerges as the best choice; the combination

of high stiffness and low strains in the constituent tensile struts render it the strongest (more than twice that of the { FCC }

truss). 

Third, the strengths of the binary trusses exhibit a stronger defect sensitivity when the material failure strain is low.

In this domain, a type IV corner defect reduces the compressive strength of the { FCC }|{ SC } truss by 25%. Fracture initiates

at the flaw location. In contrast, in the pristine truss, failure initiates in the type III struts at the truss corners and edges,

indicated in Fig. 3 . In the { BCC }|{ SC } truss, type IV edge and corner defects reduce compressive strength by roughly 13 and

16%, respectively. The reductions in strength agree with strain amplifications due to these defects ( Table 4 ). In both defective
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Fig. 10. (a) The maximum principal strain concentrations in the {5 FCC } 3 truss fall in the range of 0.6 to 1.5, although the number density of struts at the 

high end of this range is exceedingly small. (b) The {5 BCC } 3 |{5 SC } 3 trusses exhibit a somewhat narrower range. Although the peak value is lower (about 

1.25), the number density of struts with the highest strains is considerably greater than that in the {5 FCC } 3 truss. 

 

 

 

 

 

 

 

 

 

 

 

trusses, tensile failure initiates near the defects. [Details of failure sequences are provided in Supplementary Material (Vid.

S8-S12).] 

5.3. Stochastic failure 

Although the present study has focused on cases in which the material failure strain and hence strength are deterministic

material properties, some insights into defect sensitivity when failure is stochastic can also be gleaned. Assuming that truss

failure occurs when the first tensile strut breaks—an assumption consistent with the FE simulations—the truss strength

distribution can be written in terms of the strut strength distribution coupled with strut stress distribution. Here the survival

probability of the truss is simply the product of survival probabilities of all individual struts. If the strength of the struts

follows a Weibull distribution with reference strength σ o for a reference volume equal to strut volume and with a Weibull

modulus (or dispersion index) m , the survival probability P s can be expressed as ( Zok, 2017 ) 

lnP s = −
N ∑ 

i =1 

(k i σn /σo ) 
m (2)

where σ n is the nominal tensile strut stress in an infinite truss, k i is the stress (or strain) concentration on strut i , and N

is the total number of tensile struts. It follows that the ratio of the median strength (corresponding to P s = 1 / 2 ) of a finite

truss in which surface effects are operative to that of a notional truss of the same size but without surface effects is 〈 k m 

i 
〉 −1 /m

where 〈 〉 denotes a mean value. 
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Fig. 11. When strut strength is stochastic, small numbers of highly-strained tensile struts have little effect on median truss strength. For representative 

values of Weibull moduli of ceramics (say m = 5 − 10 ), the median strength would be reduced by less than 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distributions of k i (shown in Fig. 10 ) range from 0.6 to 1.5 in the { FCC } truss and 0.6 to 1.25 in the { BCC }|{ SC } truss. The

computed ratios of median strengths (in Fig. 11 ) show that: (i) as m → ∞ , the ratio of median strengths approaches 1/ k max ,

and (ii) for Weibull moduli typical of structural ceramics ( m = 5 − 10 ), the ratios of median strengths are close to unity. (For

example, for m = 5 , the ratios are 0.98 and 0.97 for the { FCC } and { BCC }|{ SC } trusses, respectively.) The inference is that the

small number of affected struts in a large truss made from a brittle material with even a modestly wide strength dispersion

should have little effect on average strength. 

6. Discussion 

Although the present study was based solely on computational modeling, the veracity of the approach has been demon-

strated recently through comparisons between numerical predictions and experimental measurements on one specific truss 

structure. The structure consisted of a 1x2x2 aray of { FCC } unit cells, made from a hard thermoplastic by stereolithogra-

phy ( Latture et al., 2018b ). In that study, strains had been measured in over 50 individual struts (all that could be imaged

externally) in each test specimen by digital image correlation during compressive loading. The computational model had

correctly predicted the onset and evolution of strut buckling, identified the transverse struts that experience the highest

tensile strain, and predicted the corresponding strut strains. 

The present study was also restricted to a single loading scenario: that of uniaxial compressive stress. The use of the

modeling approach for other scenarios would require specification of the pertinent boundary conditions as well as truss

geometry, characterized by the number and the arrangement of unit cells. To illustrate, we consider design of lightweight

sandwich panels comprising a truss core and two thin face sheets. Such panels are attractive for use not only in structural

applications but also where additional functionality may be required, e.g. for internal cooling or heat exchange. 

Sandwich panels exhibit two fundamental characteristics that differ from those considered here: (i) unit cells are ar-

ranged in a planar fashion with, generally, a small number of cells through-thickness and a large number in-plane (in con-

trast to the cubic arrays analyzed here) and (ii) facesheets strongly constrain deformation of the core. For example, when

a uniformly-distributed pressure is applied onto a facesheet of a sandwich panel and the facesheets are sufficiently stiff,

the core is subjected to a state of essentially uniaxial compressive strain (not stress). Here essentially all of the tensile load

that would otherwise be supported by the transverse struts would be supported by the facesheets. But, at the panel edges,

these constraints would diminish with distance from the face sheets (measured in multiples of unit cell dimensions). If the

core were thick, the peak tensile stresses near the core center would differ substantially from those near the facesheets.

Failure prediction in these scenarios would require computational models of the type employed here, incorporating truss

size and geometry as well as boundary conditions that reflect constraints of the facesheets. Taking this idea to the limit,

cores could be designed in a way that eliminates tensile struts altogether. This would be accomplished, for example, with a

core comprised of an { FCC } truss with only one unit cell in the thickness direction and with the transverse struts on the two

faces replaced by facesheets. All struts would therefore be subjected to compression when the panel is loaded externally by

pressure. 

Although the single-layer core structure may be desirable for mechanical performance, it may not be suitable when other

functionality is required. For example, design for effective cooling or heat exchange by passage of a fluid through the core

would require consideration of the internal surface area and the dynamics of fluid flow. Here a higher density of smaller
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struts would enable more efficient heat transfer, at the expense of larger pressure drops, for a fixed relative density. In turn,

a greater number of unit cells would be required to span the distance between the facesheets and therefore the presence of

transverse struts would be unavoidable. 

7. Conclusions 

The key conclusions from this study follow. 

1. Among the three trusses studied here, { FCC } is the most defect-tolerant. This is because the strain elevations around bulk

strut defects (distant from the free surfaces) are smaller than those at free surfaces. Even when defects are located at a

free surface and the strain elevations from the defects are conflated with those due to the surface itself, their effects on

local strut strains and compressive truss strength are remarkably small ( ≤ 5%). 

2. Somewhat greater strength reductions are obtained in the binary trusses when defects are situated at the corners (by

about 20-25%), a result of the higher strain elevations around these defects. 

3. The full strength potential of the { FCC } truss, dictated by large-scale strut buckling, is only attained when the material

failure strain exceeds a critical value of εf / ρ ≈ 0.25. This condition is conceivably attainable with hard thermoplastics; a

failure strain of ε f = 0 . 05 would satisfy this condition for relative densities up to ρ = 0 . 2 . In contrast, if the truss were

made of a high-strength ceramic, where the failure strain (optimistically) may be ε f = 0 . 01 , the condition would only be

satisfied for relative densities up to ρ = 0 . 04 . 

4. When the condition for large-scale buckling is satisfied and the maximum possible strength is attained, the { FCC } truss

is preferred over the two binary trusses, since it attains its peak strength at the lowest level of material failure strain.

Although in principle the binary { BCC }|{ SC } truss can achieve a slightly higher strength, this requires materials with much

higher failure strains (by almost an order of magnitude). Because of the additional constraints on material properties and

the greater geometrical complexity of this truss topology, the marginal strength gains would not likely warrant selection

of this truss topology, unless the design necessarily required elastic isotropy in combination with high strength. 

5. In cases in which the material failure strain falls well below that required to attain large-scale strut buckling, say

εf / ρ < 0.1, as it might in low relative density ceramic trusses, the { BCC }|{ SC } truss would be preferred, since it exhibits

the highest strength, more than twice that of the { FCC } truss. This is a consequence of the higher truss stiffness and the

lower tensile strains generated in the { BCC }|{ SC } truss. 
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