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Abstract

Structural wood composites are frequently used in building construction for beams and columns. While the technology for the production

of these composites is highly advanced, modeling techniques to predict material behaviour in building applications are severely lacking. This

paper proposes a material model that is based on orthotropic elasticity, anisotropic plasticity for non-linear behaviour in compression and the

Weibull weakest link theory to predict brittle failure. This three-dimensional model is implemented using finite element analysis for two

sample cases: the notched shear block specimen and a single-bolt connection specimen. Model output is compared against laboratory test

results and provides detailed information on load–displacement, ultimate strength and mode of failure.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is only recently that wood composites have been used

as full size beams and columns in building construction.

These composite structural elements have been welcomed

by the construction industry for a number of reasons

including: (1) reduced strength variability compared to

solid lumber; (2) dimensional stability and (3) reduced

reliance on old growth trees by using smaller diameter trees

from species that grow faster. While the technology to

produce wood composites has advanced significantly,

predicting the behaviour of the material has not. To

successfully introduce these new materials into the main-

stream construction market, the industry needs reliable and

detailed modeling techniques to predict the influence of

species, strand size and other variables on the engineering

properties of wood composites. With proper modeling,

further improvements on production efficiency and material

properties can be gained.

Material modeling of wood and the simulation of panel

lay-ups are critical starting points to controlling the strength

and stiffness of wood composites and understanding the

performance of mechanical connections. In this study, a

new material model is proposed to describe the mechanical

behaviour of wood and wood composites. This model is

used to predict behaviour in two applications: a notched

shear block test specimen and a single-bolt connection.

Both applications are verified with experimental data based

on custom-fabricated wood composite panels, similar in

make-up to commercially produced laminated strand

lumber (LSL).

2. Laminated strand lumber

LSL is a panel composite made from wood strands

approximately 30 cm long, 2.5 cm wide and less than 1 mm

thick. Panels are typically fabricated from aspen (Populus

tremuloides) or yellow-poplar (Liriodendron tulipifera)

strands by orienting resin-sprayed strands into large mats

followed by the application of steam and pressure. Using

this process, panels up to 75 mm thick can be formed and

then cut into beams or columns. Strand orientation in the

plane of the panel can be controlled to increase axial and

bending stiffness and strength. Although most strands in

commercial LSL are oriented in one direction, limitations in

the manufacturing process result in a significant percentage

of cross-aligned strands. This results in reduced stiffness

and strength in the direction parallel to the strands and

increased stiffness and strength in the orthogonal in-plane

direction (in the plane of the strands). Panel properties are

thus highly dependent on strand orientation and stacking

sequence [1].

The aspen panels for the current study were hand-laid to

better control the orientation of the strands and to fabricate
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panels with stacking orientations that are not used in

commercial production at the moment. The average panel

density was tested to be at 690 kg/m3. The following

stacking sequences were used for this investigation (Fig. 1):

(A) fully oriented (100%); (B) fully random (0%); (C) three

equally thick layers with surfaces oriented and the core

random (66%); (D) three layers with surfaces random and

the core oriented (33%) and (E) eight oriented layers aligned

at angles 0 and ^458 (50%). The numbers in parentheses

refer to the percentage of strands oriented along the primary

strength axis.

Test specimens were cut from these panels for single-bolt

connections and for standard tension, compression and

shear tests to determine orthotropic properties.

3. Material properties: test methods

Basic uniaxial material properties were required to

develop the constitutive relations for LSL for use in

the finite element model. Extensive details can be found

in Ref. [2]; however, a summary is provided here. The

specimens were stored for 2 months in controlled conditions

of 65% relative humidity and 20 8C. Moisture content at

testing was approximately 9% on average. In all tests,

careful attention was paid to the conditions at the onset of

failure and to the mode of failure. Tension and compression

properties were tested in the three material directions X; Y

and Z shown in Fig. 1. Shear properties were tested in the

XY ; YZ and XZ planes. Tension behaviour in the plane of the

panel was determined using modified ASTM D1037 [3]

specimens. Two lengths were tested in each direction in the

plane of the panel to determine the size effect relationship.

Elastic modulus was also determined. The ultimate tensile

strength perpendicular to the panel surface was determined

using ASTM D1037 internal bond specimens. Two speci-

men thicknesses were tested to determine the size effect.

Elastic modulus was not measured using these specimens.

Compression in the plane of the panel was measured

using to ASTM D143 [4] specimens in the X and Y-

directions. Compression in the Z-direction was measured

using a 38 £ 38 £ 38 mm3 block specimen. In compression,

non-linear load–displacement behaviour was measured to

determine elastic modulus, tangent modulus and ultimate

stress.

Shear behaviour was measured according to ASTM

D143 [4]. Two specimen sizes were tested in each

orientation to determine if the size effect could be measured.

The six Poisson’s ratios were measured for panel types

‘A’ and ‘B’ using three non-standard compression speci-

mens. The two specimens loaded in the plane of the panel (X

and Y-directions) had dimensions 25 £ 25 £ 100 mm3.

Perpendicular to the plane of the panel (Z-direction),

the test specimens had dimensions 25 £ 25 £ 38 mm3.

Ten replicates were tested for each type of specimen.

The Poisson’s ratios were determined from data prior to

Nomenclature

d bolt or dowel diameter (mm)

Ei modulus of elasticity (MPa)

Etang; ET tangent modulus (MPa)

e end distance (mm)

Fi; Fij strength tensors of second and fourth rank

(MPa21, MPa22)

Fv probability of failure

Gij shear modulus (MPa)

I integral function

½J� Jacobian matrix

K effective yield stress (MPa)

k shape parameter for Weibull distribution

l length of bolt or thickness of wood member

(mm)

Mij anisotropic strength parameters in

tensorial form

m scale parameter for Weibull distribution (MPa)

p probability of failure

Vi specimen volume

Vp reference volume (m3)

X; Y ; Z principal axes of orthotropy

x; y; z material and global co-ordinate system

sþi; s2i yield stress in tension or compression (MPa)

sp reference stress for Weibull distribution (MPa)

sij shear stress in material coordinate system (MPa)

Abbreviations

A, B, C, D, E panel lay-up types

AN specimens cut at 458 to main strand axis

LSL laminated strand lumber

Pa specimens cut parallel to main strand axis

Pe specimens cut perpendicular to main strand axis

R randomly oriented layers

Fig. 1. LSL panel stacking sequence. ‘A’ fully oriented. ‘B’ randomly

oriented. ‘C’ 08/R/08, ‘D’ R/08/R. ‘E’ 08/þ458/2458/0/0/2458/þ458/0. (R

indicates random layer).
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the onset of non-linear stress–strain behaviour. Four steel

pads were mounted to the sides of each specimen with a

25 mm gauge length to accommodate a bi-axial extens-

ometer. The Poisson’s ratio was determined from the ratio

of transverse to axial strains for each specimen.

4. Material properties: results

The observed test behaviour was typical for wood and

wood composites: tension stress–strain behaviour was

found to be linear elastic to failure and different in the

three primary orthotropic directions; ultimate tension

strengths in the three directions for different size specimens

were well-fitted with the Weibull probability distribution

(commonly used to represent the distribution of strength of

wood); compression behaviour, shown in Fig. 2 for panel

type A, was found to be elastic until a point, upon which

behaviour was ductile and nearly bi-linear in each of the

three primary material directions; shear behaviour, shown in

Fig. 3 for panel type A, was linear elastic followed by brittle

failure; ultimate shear strengths in the three principal shear

planes for different size specimens were well-fitted with

the Weibull distribution. Fitted values of properties are

given in Tables 1a and 1b.

5. Material modeling

Three-dimensional finite element models have been

used to predict delamination failure in fibre-reinforced

plastic composites due to out-of-plane normal and shear

stresses [5,6]. Currently, there is no generally accepted

theory for the prediction of elastic and plastic stiffness and

strength properties in wood. Based on the test results, as

observed in this study, it is evident that the new model for

wood and wood composites should incorporate orthotropic

elasticity, anisotropic plasticity for the non-linear proper-

ties of wood in compression, and the size effect to predict

ultimate strength for brittle modes of failure. The material

model was created in ANSYS [7] using the built-in

orthotropic elasticity and the anisotropic plasticity models

and a user-programmable routine to predict brittle failure.

The anisotropic plasticity material model has been shown

to effectively predict the behaviour of non-wood composites

in two-dimensional finite element models [8]. This model

accounts for permanent deformation and energy dissipation

in three orthogonal planes. It is based upon the yield

criterion for orthotropic materials and can accommodate

differences in compression and tension yield stresses in each

direction [9,10]. The model uses work hardening [11] and an

associative flow rule. Details on this model can be found in

any of the above references. A sample bi-linear stress–

strain curve for the anisotropic plasticity model is shown in

Fig. 4: the yield stress and tangent modulus for one material

direction are shown. The two other normal stress–strain

curves and three shear stress–strain curves are also required

for this model resulting in a total of 18 constants.

Two criteria must be satisfied when using this model. To

satisfy the requirement for plastic incompressibility, the

yield stresses sþi and s2i in tension and compression,

respectively, are inter-related

sþx 2 s2x

sþxs2x

þ
sþy 2 s2y

sþys2y

þ
sþz 2 s2z

sþzs2z

¼ 0 ð1Þ

To maintain a closed yield surface

M2
11 þ M2

22 þ M2
22 2 2ðM11M22 þ M22M33 þ M11M33Þ , 0

ð2Þ

where

Mii ¼
K

sþis2i

ði ¼ 1; 2; 3Þ ð3Þ

and

K ¼ sþxs2x ð4Þ

Eq. (2) must be satisfied at all levels of strain since the

yield stresses will change as work hardening proceeds.
Fig. 2. Stress–strain experimental curves for compression behaviour in type

‘A’ LSL. Anisotropic plasticity curves shown in dark.
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The restrictions imposed by Eqs. (1) and (2) make it difficult

to fit experimental results to this plasticity model. This is

particularly true for highly orthotropic materials such as

LSL. To simplify the problem, the yield stresses in tension

Fig. 3. Load–displacement curves for shear blocks in type ‘A’ LSL. Predicted curves shown in dark.

Table 1(a)

Material properties for uniaxial behaviour of LSL with anisotropic

plasticity model

Type A fully

oriented

panels

(MPa)

Type B

randomly

oriented

panels

(MPa)

Ex 655 5516

Ey 11,721 5516

Ez 90 103

ETx 31 57

ETy 345 57

ETz 25 23

s2x 6.6 16

s2y 24 16

s2z 5.6 9.0

Tension

values

Yield ‘A’

sþi (MPa)

Ultimate ‘A’

sp
i ðV ¼ 16:4;

p ¼ 0:5Þ

Yield ‘B’

sþi (MPa)

Ultimate ‘B’

sp
i ðV ¼ 16:4;

p ¼ 0:5Þ

X 6.6 4.8 16 22.7

Y 24 52.7 16 22.7

Z 5.6 1.3 9.0 1.2

Poisson’s ratios not shown.

Table 1(b)

Material properties for shear behaviour of LSL with anisotropic plasticity

model

Type A fully

oriented panels (MPa)

Type B randomly

oriented panels (MPa)

Gxy 1379 2068

Gyz 421 345

Gxz 179 345

GTxy 3.4 3.4

GTyz 3.4 3.4

GTxz 3.4 3.4

s^xy 34 55

s^yz 55 55

s^xz 55 55

Ultimate ‘A’ sp
i

ðV ¼ 16:4; p ¼ 0:5Þ

Ultimate ‘B’ sp
i ðV ¼ 16:4;

p ¼ 0:5Þ

XY 20.4 23.4

YZ 8.3 8.1

XZ 5.4 8.1
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and compression were set equal to each other for each

direction (i.e. sþx ¼ s2x; sþy ¼ s2y; sþz ¼ s2z). How-

ever, the tension and shear yield stresses were set artificially

high to avoid yield conditions; the failure analysis was used

to detect brittle failure prior to the onset of fictitious

yielding. A spreadsheet was developed using an optimiz-

ation algorithm to satisfy these conditions up to 20% plastic

strain.

Sample stress–strain curves for LSL are shown in Fig. 2.

Model constants are listed in Tables 1a and 1b.

6. Failure prediction

The material model is crucial for determining the state of

stress in a member under any given load. The failure model,

on the other hand, must be capable of analysing the state of

stress to determine whether or not brittle failure has

occurred. Several criteria have been developed that are

applicable to wood and orthotropic materials, although most

are difficult to apply to three-dimensional stress fields. The

most common criteria include fracture mechanics, charac-

teristic distance and failure surfaces as defined by

polynomial functions of stress tensors. A brief review of

these follows to illustrate their limitations. This is followed

by a description of the size effect theory that was used for

the current study.

Fracture mechanics is typically used to predict the

propagation of a single crack in a uniform stress field,

although mixed mode criteria for combined tension

perpendicular-to-grain and shear stresses have been devel-

oped. Unfortunately, the fracture toughness constants for

mixed mode fracture are difficult to predict accurately for

wood [12]. A single-bolt connection model using fracture

mechanics was proposed for wood connections loaded

perpendicular-to-grain with uniform stresses throughout

the member thickness [13], however, this model was limited

in application. In other cases where fracture mechanics was

used for connection modelling, researchers have had to

introduce fictitious stresses to predict failure [14].

Researchers have successfully applied the characteristic

distance concept to multiple-bolt connections in non-wood

composites [15–18]. In simple terms, the characteristic

distance is a length of material that must be subjected to

critical stresses prior to total failure. Thus, once some part of

the material has reached critical failure stresses, the analysis

is continued until this critical stress is reached all along a

pre-selected path. The path and its length are referred to as

the characteristic distance. It is likely that this approach has

not been used for connections in wood composites because

many cases exist where the failure is not entirely brittle and

where ductility in the steel bolt affects the overall behaviour.

Another class of criteria are those that use a failure

envelope. Detailed reviews of this type of criteria can be

found in Refs. [19] and [20]. The simplest criteria are the

Maximum Stress and Maximum Strain criteria that assume

failure to occur when one of the principal stresses (or

strains) exceeds the critical stress (or strain) for that

direction. For isotropic materials, the critical value is the

same in all directions. While these criteria do not account

for stress interactions, they are simple to apply and the

critical material strength can normally be determined from

straightforward uniaxial tests.

For orthotropic materials, the tensor polynomial Tsai-Wu

failure theory [21] can be used to relate normal stresses and

shear stresses and their interactions according to

f ðskÞ ¼ Fisi þ Fijsisj ¼ 1 where i; j and k ¼ 1; 2; 3;…; 6

ð5Þ

Failure occurs when f ðskÞ is greater than 1. The polynomial

represents a failure surface in stress space. Higher order

tensors are typically removed from the polynomial in

practice to make the criterion manageable. Differences in

tension and compression strengths are accounted for in the

parameters Fi and Fii: These functional terms can be

determined from straightforward uniaxial strength tests as

shown in Ref. [21]. Fij interaction terms, however, are not

clearly defined although some researchers have attempted to

find a theoretically based equation for these terms [22,23].

The proposed interaction equations for Fij require exper-

iments under various stress combinations and at magnitudes

which vary over a range of angles to the axes of orthotropy

(off-axis testing) followed by calibration of the equation

through curve-fitting. Experiments have been proposed to

determine these terms for non-wood composites but they

remain difficult to obtain [21,24,25]. For wood composites, it

was shown that, for a two-dimensional model, the Tsai-Wu

criterion with the interaction terms could be used to predict

failure providing that size effects were incorporated in the

prediction of failure strengths [26]. Thus, the failure theory

produced adequate results with the interaction terms

Fig. 4. Bi-linear stress–strain curve for normal stress in anisotropic

plasticity model.
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included. Some researchers have assumed the interaction

terms to be zero in their analyses [25] because determining

these terms requires a considerable amount of testing even

for just one coefficient, as was shown by Clouston in Ref.

[26]. While this may be sufficient for two-dimensional

analyses, arbitrarily zeroing the interaction terms of the

failure tensor should be avoided in three-dimensional

analyses [27] and, in particular, for wood [28]. A review of

research on failure prediction of bolted connections

suggested that considerable development of failure criteria

is still required for wood [28].

To this point, deterministic failure theories have been

discussed. Probabilistic failure prediction can be incorpor-

ated into some of these models to account for variability in

wood composites. The Weibull weakest link theory has been

used, in the past, to predict the strength of wood members and

connections in wood [29–31] and is now generally accepted

for wood. The Weibull theory and the Maximum Stress

theory were chosen for the current study for the following

beneficial reasons: (1) it applies to non-uniform stress fields

and amplifies stress concentrations using the shape par-

ameter (defined shortly); (2) failure can be predicted for a

given probability; (3) material variability is captured and (4)

while this approach is continuum based, the amplification of

highly stressed regions enables the analyst to isolate the

location of critical stresses and the mode(s) of failure.

The Weibull weakest link theory [32] postulates that for

brittle materials, larger specimens are more likely to fail at

lower stresses due to the increased probability of a flaw in

that larger specimen volume. The probability of brittle

failure, FV; based on a two-parameter Weibull distribution

is a function of the stress distribution over the volume of

material

FV ¼ 1 2 e
2

1
Vp

ð
V

s

m

� �k

dV
ð6Þ

where Vp is a reference volume k is the shape parameter, m

is the scale parameter associated with the reference volume,

and s is the stress (tension or shear, in any given direction or

plane, respectively). The reference stress is based on

experimental results. The failure stress for a given

probability of failure, p; is

sp ¼ m½2lnð1 2 pÞ�1=k ð7Þ

It can be shown that failure occurs when the reference stress,

sp; occurring over volume Vp; satisfies the following

inequality which relates a complex state of stress over an

arbitrary volume to the reference stressð
V
sk dV . spkVp ð8Þ

This form is similar to the Maximum Stress theory where

each stress is treated individually and stress interactions are

assumed to have little or no effect. A user-programmable

subroutine was written with the following algorithm to

evaluate Eq. (8) at each load-step in the finite element

analysis post-processor to determine when or if failure

occurred due to each of the three normal tension stresses and

each of the three shear stresses. The volume integral, I

I ¼
ð

V
sk dV ð9Þ

must be evaluated for each three-dimensional solid element

using Gaussian integration. It can be shown that

I ¼
ð1

21

ð1

21

ð1

21
sklJl dj dh dz ð10Þ

where ½J� is the Jacobian in terms of local element

coordinates ðj;h; zÞ: The determinant of ½J� is equal to the

volume of the element in global co-ordinates and is

calculated from the nodal co-ordinates and the derivatives

of the element shape functions. Gaussian integration was

used to evaluate Eq. (10).

The integral (10) is determined for each element and then

summed for all elements to give the volume integral over

the entire model geometry in global co-ordinates. The

operation is repeated for each stress component with its

corresponding k: Accuracy is dependent on the number of

integration points.

7. Shear block model

The notched shear block is commonly used to determine

shear strength of wood. To test the new material model, a

three-dimensional finite element model of a shear block was

developed and the results were compared with results from

laboratory tests. Model geometry and boundary conditions

for a single shear block are shown in Fig. 5. Eight-noded,

three-dimensional quadrilateral isoparametric brick

elements were used for the wood and steel platens. These

elements have three displacement degrees-of-freedom at

Fig. 5. Shear block finite element model geometry.
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each node: UX, UY and UZ. Surface-to-point contact

elements were used on interfaces. Planes of symmetry were

modelled by setting the relevant displacements to zero on

the plane. A typical shear block model had roughly 500

solid elements plus the contact interface elements. A higher

mesh density was used in regions of stress concentrations.

The steel test frame was simulated using rigid brick

elements for the base and loading platen. The base was

restricted from moving in each of the three degrees-of-

freedom, whereas the loading platen was only allowed to

move in the direction of loading, as shown in Fig. 5. The

load was applied by displacing the platen. Rollers were

placed on the backside of the specimen to simulate the

supporting back plate, as indicated in Fig. 5. Only half of

the actual shear block was modelled due to symmetry of the

specimen. Surface-to-point contact elements were used

between the steel frame and the wood specimen to allow

gaps to form between the steel and the wood block due to

block rotation.

8. Bolted connection tests and modeling

The single-bolt connection test set-up is shown in

Fig. 6(a). End and edge distances were chosen to ensure

that both brittle and ductile behaviour could be observed.

Table 2 lists the typical bolt diameter, member geometry

and direction of loading for each panel type.

All bolted connections, regardless of the material, will

develop an uneven three-dimensional stress field dependent

on the connection geometry and material properties of

the members and the connectors. In non-wood composites,

the member is relatively thin compared to the bolt resulting

in relatively uniform stresses throughout the member

thickness; however, in wood composites, the member is

much thicker. As a result, bolted connections in wood

composites typically exhibit ductility prior to failure: large,

permanent deformations of wood cells occur in compression

along with yielding of the steel bolt in bending. When a

wood member is relatively thin, or end and edge distances

are relatively small, brittle failure is observed.

The geometry of the three-dimensional finite element

model for the connection was based on a previous model

[33], and is shown in Fig. 6(b). The same brick elements

were used again in the bolted connection model for the steel

bolt and the wood member. Roughly 600 elements were

used for the wood member and 500 for the bolt. A contact

interface was placed between the bolt and wood. One-

quarter of the geometry was modeled by setting displace-

ments to zero on planes of symmetry. The geometry of the

model could be modified for changes in end distance, edge

distance, member thickness, bolt diameter, hole clearance

and support location. To isolate the behaviour of the

connector and the highly stressed zone in the wood member,

no side members were included in the model. The material

model described above was used for each of the five panel

types. Panel types C, D and E were simulated by creating a

stack of layers with type A and/or B properties.

9. Results: shear blocks

Example load–displacement results are shown in Fig. 3.

Since the shear strengths in LSL were unknown, the integral

Fig. 6. (a) Connection test set-up (based on Ref. [33]) shown upside-down. (b) Finite element model geometry. Wood properties set parallel-to Y-direction, X-

direction or 458 between, for loading parallel-to, perpendicular-to and at 458-to-grain, respectively. Properties can be entered for material layers.
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Table 2

Single-dowel connection geometry, experimental results and predicted results

Type d (mm) e=d edge=d l=d Ultimate load (kN) Ultimate disp. (mm) Failure Mode

Exp. Pred. Exp. Pred. Exp. Pred.

A-Pa 9.5 2 1.5 4 8.0 6.4 2.8 1.3 B Z

A-Pa 9.5 3 1.5 4 .11.1 .7.3 .7.1 .2.5 D D

A-Pa 9.5 4 1 4 .10.7 .7.3 .5.8 .2.5 D D

A-Pa 9.5 4 1.5 4 .10.4 .7.3 .9.9 .2.5 D D

A-Pa 13 2 1.5 3 12.0 12.2 2.0 1.0 B Z

A-Pa 13 3 1 3 .19.0 .13.3 .8.4 .1.8 D D

A-Pa 13 4 1.5 3 .19.4 .13.3 .6.6 .1.8 D D

A-Pa 19 2 1.5 2 19.8 16.6 1.3 1.0 B X/Z

A-Pa 19 3 1.5 2 33.0 23.6 2.3 1.5 B Z

A-Pa 19 4 1 2 .27.5 17.1 .1.5 1.0 NA Z

A-Pa 19 4 1.5 2 .32.3 26.2 .2.8 1.5 NA Z

A-Pe 9.5 2 3 4 6.3 5.0 2.0 1.3 B X

A-Pe 9.5 4 3 4 7.0 5.1 3.3 1.3 B X

A-Pe 19 2 3 2 15.5 7.5 2.3 1.0 B X

A-Pe 19 4 3 2 15.2 7.7 2.0 1.0 B X

A-AN 9.5 2 3 4 8.6 6.4 3.3 1.8 B X

A-AN 9.5 4 3 4 .10.7 .6.5 .9.9 .1.8 D D

A-AN 19 2 3 2 18.1 9.1 1.8 0.8 B X

A-AN 19 4 3 2 27.3 14.8 6.1 1.0 B X

B-Pa 9.5 2 1.5 4 9.8 6.1 6.1 1.5 B/D Z

B-Pa 9.5 3 1.5 4 .10.1 .6.2 .9.4 .1.5 D D

B-Pa 9.5 4 1 4 5.8 5.3 1.0 1.0 B Z

B-Pa 9.5 4 1.5 4 .10.0 6.2 .8.4 1.8 D Z

B-Pa 13 2 1.5 3 14.3 11.1 3.6 1.0 B Z

B-Pa 13 3 1 3 .17.9 12.0 .8.1 1.3 B/D Z

B-Pa 13 4 1.5 3 .17.0 12.0 .6.9 1.3 D Z

B-Pa 19 2 1.5 2 24.4 16.3 6.1 1.0 B Z

B-Pa 19 3 1.5 2 31.4 17.4 4.3 1.3 B Z

B-Pa 19 4 1 2 14.9 10.3 1.3 0.8 B Z

B-Pa 19 4 1.5 2 30.9 17.4 6.4 1.3 B Z

C-Pa 9.5 2 1.5 4 8.7 7.2 5.3 2.8 B/D Z, 08

C-Pa 9.5 3 1.5 4 .10.2 .7.0 .7.6 .2.5 D D

C-Pa 9.5 4 1 4 9.6 .7.1 6.6 .2.5 B/D D

C-Pa 9.5 4 1.5 4 .11.0 .7.0 .9.9 .2.5 D D

C-Pa 13 2 1.5 3 15.6 12.2 5.1 1.0 B Z, 08

C-Pa 13 4 1.5 3 .20.4 .13.6 .11.4 .1.8 D D

C-Pa 19 2 1.5 2 22.6 18.1 2.0 1.0 B Z, 08

C-Pa 19 3 1.5 2 32.8 23.0 5.3 1.0 B Z, 08, R

C-Pa 19 4 1 2 30.0 14.7 2.3 0.8 B Z, R

C-Pa 19 4 1.5 2 .35.8 .24.4 8.4 1.3 B/D Z, 08

C-Pe 9.5 2 3 4 8.8 6.0 5.1 1.5 B Z, 08

C-Pe 9.5 4 3 4 .11.0 6.1 .13.2 1.8 B/D Z, 08

D-Pa 9.5 2 1.5 4 9.4 6.4 5.8 1.3 B Z, R

D-Pa 9.5 3 1.5 4 .10.7 .5.5 .9.9 .1.0 D D

D-Pa 9.5 4 1 4 8.2 5.5 3.6 1.0 D Z, R

D-Pa 9.5 4 1.5 4 .10.7 .6.3 .11.9 .1.8 D D

D-Pa 13 2 1.5 3 13.8 11.8 4.1 1.0 B Z, R

D-Pa 13 4 1.5 3 .20.6 12.6 .11.7 1.3 B/D Z, R

D-Pa 19 2 1.5 2 27.0 17.8 2.0 1.0 B Z, R

D-Pa 19 3 1.5 2 34.9 20.6 5.6 1.0 B/D Z, R

D-Pa 19 4 1 2 24.7 12.5 2.0 0.8 B Z, R

D-Pa 19 4 1.5 2 32.6 20.7 7.1 1.0 B Z, R

D-Pe 9.5 2 3 4 .10.4 .6.0 .9.1 .1.3 D D

D-Pe 9.5 4 3 4 .11.0 .6.2 .13.7 .1.3 D D

E-Pa 9.5 2 1.5 4 8.6 6.5 3.3 1.5 B Z, 08

E-Pa 9.5 3 1.5 4 .10.4 .7.3 .10.9 .2.5 B/D D

E-Pa 9.5 4 1 4 9.7 6.5 5.1 1.5 B Z, þ458

E-Pa 9.5 4 1.5 4 .11.3 .7.3 .10.7 .2.5 D D

E-Pa 13 2 1.5 3 13.6 13.0 3.6 1.8 B Z, 08

(continued on next page)
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of Eq. (8) was evaluated to back-calculate the reference

shear stress for a unit volume at the end of the analysis.

After detailed analysis, failure of these specimens was

found to be governed by the development of tension stresses

perpendicular to the panel thickness, not shear stresses. The

model was used to prove that a stress concentration of

roughly two (2) at the notch leads to premature failure of the

specimens [3].

10. Results: bolted connections

Average results of laboratory single-bolt connection tests

are listed in Table 2 along with the predicted model results

for p ¼ 0:5: Two sample load–displacement curves are

shown in Fig. 7. These plots are shown here to illustrate the

difference in ductility between specimen groups. Both

specimen groups followed a very similar load–displace-

ment path, however, specimens with small end distance, 2d;

failed earlier than those with 4d end distance. Model results

are superimposed on the experimental curves shown in

Fig. 7. The predicted curves end at the lesser of: (a) the point

of predicted failure based on p ¼ 0:5 (i.e. average values) or

(b) 2.5 mm (the point at which the analysis was stopped).

Ultimate loads were always predicted conservatively to

be within 50–84% of the experimental averages for all

specimen groups and loading orientations. The reason for

the conservative estimates is that failure of the entire

connection was assumed to occur at the first instance that

the governing stresses (tension or shear) reached capacity.

Thus, if delamination (i.e. tension in the Z-direction)

failure was predicted to start in the specimen at a

particular load, then the analysis was stopped—in reality,

the specimen would continue to carry more load until it

would either fail under the initial failure condition, or

under an entirely different mode that could become

critical at a later stage.

Ductile behaviour was predicted to occur when the

load–displacement curve exhibited non-linearity and

when the failure criterion was not satisfied up to the

2.5 mm displacement level. The mode of failure was

predicted near to the observations from experiments as

indicated in Table 2. The model was found to be well

behaved for predicting the failure modes in all loading

orientations, as indicated in Table 2. In addition, the layer

in which failure occurs is predicted for multiple-layer

panels C, D and E. Shear stress concentrations in Fig. 8

show the distinct differences between fully oriented

specimens and eight-layer type E specimens. Type A

has more or less uniform stress distribution throughout its

thickness, whereas type E has stress concentrations at the

interfaces of the layers.

Table 2 (continued)

Type d (mm) e=d edge=d l=d Ultimate load (kN) Ultimate disp. (mm) Failure Mode

Exp. Pred. Exp. Pred. Exp. Pred.

E-Pa 13 4 1.5 3 .21.5 .12.8 .11.2 .1.5 D D

E-Pa 19 2 1.5 2 24.4 19.8 2.0 1.3 B Z, 08

E-Pa 19 3 1.5 2 37.8 23.1 6.9 1.5 B XY, þ458

E-Pa 19 4 1 2 24.5 15.0 1.8 1.0 B Z, 0, ^458

E-Pa 19 4 1.5 2 .37.1 22.1 .7.9 1.3 D XY, þ458

E-Pe 9.5 2 3 4 .10.0 5.1 .8.9 1.0 B/D X, 08

E-Pe 9.5 4 3 4 .10.9 .5.6 .10.7 .1.8 B/D D

NA, no failure achieved to due grip limitations; X, Z, XY indicate tension failures in X and Z-directions and shear failure in the XY-plane, respectively; ‘B’

indicates brittle fracture occurred; D indicates no fracture occurred and behaviour was ductile; R, 0 and ^458 indicate layer in which failure was found to occur

(random or oriented at 0 or ^458, respectively).

Fig. 7. Load–displacement curves for fully oriented type ‘A’ LSL panels loaded parallel-to-grain. ‘X’ indicates point of failure due to splitting in specimens

with e=d ¼ 2: Specimens with e=d ¼ 4 exhibited ductile behaviour only. Analytical predictions are shown as bold curves.
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11. Conclusion

The proposed new material model for wood composites

was shown to perform well for the two sample cases as

discussed. For shear blocks, the model was used to

determine shear constants and to confirm that the notch

results in a stress concentration that leads to under-estimated

strength predictions. For bolted connections, the material

model was found to predict load–displacement, ultimate

strength and mode of failure with reasonable accuracy for

many variables including wood species, panel lay-up and

connection geometry. The model has already been used to

make strength and behaviour predictions of multiple-bolt

connections [34].

This material model will allow manufacturers to predict

the effects of changing orientation within their products and

enable them to optimize their products through control of

strand orientation. The model is capable of determining the

effect of changes in material properties as may occur when

other species of trees are considered for raw materials. The

single-bolt connection model is particularly significant as it

explains many of the observed phenomena from exper-

imental studies with respect to end distance, edge distance

and modes of failure.
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